Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (2): 141-154    DOI: 10.11900/0412.1961.2020.00446
Research paper Current Issue | Archive | Adv Search |
Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel
HUA Yu1, CHEN Jianguo2, YU Liming1, SI Yonghong2, LIU Chenxi1(), LI Huijun1, LIU Yongchang1()
1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2.Tianjin Special Equipment Inspection Institute, Tianjin 300192, China
Cite this article: 

HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel. Acta Metall Sin, 2022, 58(2): 141-154.

Download:  HTML  PDF(5701KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High Cr ferrite heat-resistant steel has excellent geometric structure stability, low radiation swelling rate, and good corrosion resistance of liquid metal. TP347H austenitic heat-resistant steel is based on the traditional 18-8 austenitic steel with the addition of a certain amount of Nb and a small amount of N to precipitate MX-type carbonitride, which results in superior high-temperature properties. Steam with high temperature and pressure flowing through supercritical thermal power units may exhibit heterogeneous connections between high Cr ferrite and austenitic heat-resistant steel components in the supercritical thermal power units. In this study, the vacuum diffusion-bonding of dissimilar materials between high Cr ferritic and TP347H austenitic heat-resistant steel was performed, the effects of diffusion-bonding time and post weld heat treatment (PWHT) process on the microstructural evolution and mechanical properties of the diffusion-affected zone was examined. The results indicated that with the extension of diffusion-bonding time, the interfacial bonding rate gradually increased. The interaction due to the difference in deformation storage energy and dislocation slips resulted in dynamic recrystallization, and the fine grains formed at the diffusion-bonding interface evolved into a serrated interface. Fine and dispersed MX and M23C6 phases were precipitated in the austenite grain boundaries and at the grain boundaries of the diffusion-bonding zone. After PWHT, the grains in the diffusion-bonding zone were further refined, dislocations were stable, dislocation density reduced, small-angle grain boundaries increased, and element diffusion was more sufficient. Tensile tests at different temperatures showed that the fractured sites were all in the matrix, which indicates that high-quality diffusion-bonding joints of dissimilar materials were achieved.

Key words:  high Cr ferritic heat-resistant steel      TP347H austenitic heat-resistant steel      diffusion-bonding      microstructure      mechanical property     
Received:  04 November 2020     
ZTFLH:  TG457.1  
Fund: National Natural Science Foundation of China(52034004);Tianjin Natural Science Foundation(18JCQNJC03300)
About author:  LIU Chenxi, associate professor, Tel: (022)85356410, E-mail: cxliu@tju.edu.cnLIU Yongchang, professor, Tel: (022)85356410, E-mail: ycliu@tju.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00446     OR     https://www.ams.org.cn/EN/Y2022/V58/I2/141

MaterialCCrWMnSiVTaPMoNiNbNFe
High Cr F0.0928.871.710.280.010.190.002< 0.005----Bal.
TP347H0.05917.6-1.59---0.0240.11610.710.540.013Bal.
Table 1  Chemical compositions of materials for experiments
Fig.1  Sketch diagrams for the process curves
Fig.2  Schematics of tensile specimen (unit: mm, Ra—roughness)
Fig.3  OM images of the parent metals for diffusion-bonding
Fig.4  Low (a1-e1) and high (a2-e2) magnified OM images and SEM images (a3-e3) showing the microstructures of the diffusion-bonding joints with the bonding temperature of 1050oC and bonding stress of 15 MPa, for the different bonding time
Fig.5  Interfacial bonding percentage as a function of the diffusion-bonding time
Fig.6  SEM images of the diffusion-bonding joints with the bonding temperature of 1050oC, bonding stress of 15 MPa, and the bonding time of 120 min after PWHT
Fig.7  EBSD analyses of the diffusion-bonding joint area before PWHT
Fig.8  EBSD analyses of the diffusion-bonding joint area after PWHT
Fig.9  TEM analyses of the diffusion-bonding joints before PWHT
Fig.10  TEM analyses of the diffusion-bonding joints after PWHT
Fig.11  EDS line scanning results of the diffusion-bonding joint after PWHT
SpecificationTemperature / oCAverage tensile strength / MPaRp0.2 / MPaElongation / %Shrinkage / %
Before PWHT25601.68263.5633.0550.66
600322.45153.7921.7947.62
After PWHT25558.82249.3724.7431.69
600290.45153.3812.2629.34
Table 2  Tensile test results of the diffusion-bonding joints before and after PWHT
Fig.12  Physical drawing of tensile fracture specimen
Fig.13  Engineering stress-strain curves of the diffusion-bonding joints before and after PWHT under testing temperatures of 25oC (a) and 600oC (b)
Fig.14  Low (a, c) and high (b, d) magnified tensile fracture morphologies of the diffusion-bonding joints at 25oC before (a, b) and after (c, d) PWHT
Fig.15  Low (a, c) and high (b, d) magnified tensile fracture morphologies of the diffusion-bonding joints at 600°C before (a, b) and after (c, d) PWHT
1 Wang J Z , Liu Z D , Bao H S , et al . Study of steel and alloys for ultra-supercritical power plant in China [J]. Iron Steel, 2015, 50(8): 1
王敬忠, 刘正东, 包汉生 等 . 中国超超临界电站锅炉关键材料用钢及合金的研究现状 [J]. 钢铁, 2015, 50(8): 1
2 Chi C Y , Yu H Y , Xie X C . Research and development of austenitic heat-resistant steels for 600oC superheat/reheater tubes of USC power plant boilers [J]. World Iron Steel, 2012, 12(4): 50
迟成宇, 于鸿垚, 谢锡善 . 600℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展 [J]. 世界钢铁, 2012, 12(4): 50
3 Liu Z D , Chen Z Z , He X K , et al . Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
刘正东, 陈正宗, 何西扣 等 . 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
4 Yuan Y , Zhong Z H , Yu Z S , et al . Microstructural evolution and compressive deformation of a new Ni-Fe base superalloy after long term thermal exposure at 700oC [J]. Mater. Sci. Eng., 2014, A619: 364
5 Li C Y , Yan W P . Element composition and property analysis of high-temperature alloy steel for supercritical boiler [J]. Electr. Power, 2007, 40(8): 52
李春燕, 阎维平 . 超临界锅炉高温合金钢合金元素组成与性能分析 [J]. 中国电力, 2007, 40(8): 52
6 Peng Y Y , Yu L M , Liu Y C , et al . Effect of aging treatment at 650oC on microstructure and properties of 9Cr-ODS steel [J]. Acta Metall. Sin., 2020, 56: 1075
彭艳艳, 余黎明, 刘永长 等 . 650℃时效对9Cr-ODS钢显微组织和性能的影响 [J]. 金属学报, 2020, 56: 1075
7 Xu H J , Zhao W W , Wang C C , et al . Microstructures and mechanical properties of welding joint of 1.4003 ferritic stainless steel and 0Cr18Ni9 austenitic stainless steel [J]. Weld. Technol., 2008, 37(6): 12
许鸿吉, 赵雯雯, 王春生 等 . 1.4003不锈钢与0Cr18Ni9不锈钢焊接接头组织和力学性能 [J]. 焊接技术, 2008, 37(6): 12
8 Muthupandi V , Bala Srinivasan P , Seshadri S K , et al . Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds [J]. Mater. Sci. Eng., 2003, A358: 9
9 Jang C , Lee J , Sung Kim J , et al . Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel [J]. Int. J. Press. Vessels Pip., 2008, 85: 635
10 Thakare J G , Pandey C , Mahapatra M M , et al . An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel [J]. J. Manuf. Processes, 2019, 48: 249
11 Li G F , Charles E A , Congleton J . Effect of post weld heat treatment on stress corrosion cracking of a low alloy steel to stainless steel transition weld [J]. Corros. Sci., 2001, 43: 1963
12 Liu C X , Mao C L , Cui L , et al . Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels [J]. Acta Metall. Sin., 2021, 57: 1521
刘晨曦, 毛春亮, 崔 雷 等 . 低活化铁素体/马氏体钢组织调控及其固相连接研究进展 [J]. 金属学报, 2021, 57: 1521
13 Solonin M I , Chernov V M , Gorokhov V A , et al . Present status and future prospect of the Russian program for fusion low-activation materials [J]. J. Nucl. Mater., 2000, 283-287: 1468
14 Balasubramanian V , Fernandus M J , Senthilkumar T . Development of processing windows for diffusion bonding of aluminium/magnesium dissimilar materials [J]. Weld. World, 2013, 57: 523
15 Huang P , Wang Y M , Peng H B , et al . Diffusion bonding W and RAFM-steel with an Fe interlayer by hot isostatic pressing [J]. Fusion Eng. Des., 2020, 158: 111796
16 Chen J G , Liu C X , Wei C , et al . Study on microstructure and mechanical properties of direct diffusion bonded low-carbon RAFM steels [J]. J. Manuf. Processes, 2019, 43: 192
17 Zhou Y H , Liu Y C , Zhou X S , et al . Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel [J]. J. Mater. Res., 2015, 30: 2090
18 Ma R F , Li M Q , Li H , et al . Modeling of void closure in diffusion bonding process based on dynamic conditions [J]. Sci. China Technol. Sci., 2012, 55: 2420
19 Yuan L , Xiong J T , Peng Y , et al . Modeling void closure in solid-state diffusion bonding of TC4 alloy [J]. Vacuum, 2012, 173: 109120
20 Wang Z C , Ridley N , Lorimer G W , et al . Evaluation of diffusion bonds formed between superplastic sheet materials [J]. J. Mater. Sci., 1996, 31: 5199
21 Pandey C , Mahapatra M M , Kumar P . Effect of post weld heat treatments on fracture frontier and type IV cracking nature of the crept P91 welded sample [J]. Mater. Sci. Eng., 2018, A731: 249
22 Fang Y J , Jiang X S , Mo D F , et al . Microstructure and mechanical properties of the vacuum diffusion bonding joints of 4J29 kovar alloy and 316L stainless steel using pure cobalt interlayer [J]. Vacuum, 2019, 168: 108847
23 Shi L , Liang F M , Yin H Q , et al . Effects of solid solution and aging on microstructure of TP347H heat resistant steel for supercritical generator set [J]. Hot Work. Technol., 2019, 48(18): 123
石 磊, 梁凤敏, 尹洪泉 等 . 固溶/时效对超超临界火电机组用TP347H耐热钢组织的影响 [J]. 热加工工艺, 2019, 48(18): 123
24 Mao C L , Liu C X , Yu L M , et al . Discontinuous lath martensite transformation and its relationship with annealing twin of parent austenite and cooling rate in low carbon RAFM steel [J]. Mater. Des., 2021, 197: 109252
25 Xu Y B , Yu Y M , Liu X H , et al . Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels [J]. J. Univ. Sci. Technol. Beijing, Miner., Metall., Mater., 2008, 15: 396
26 Bacca M , Hayhurst D R , McMeeking R M . Continuous dynamic recrystallization during severe plastic deformation [J]. Mech. Mater., 2015, 90: 148
27 Zhou X S , Liu Y C , Yu L M , et al . Uniaxial diffusion bonding of CLAM/CLAM steels: Microstructure and mechanical performance [J]. J. Nucl. Mater., 2015, 461: 301
28 Chen J G , Liu C X , Liu Y C , et al . Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel [J]. J. Nucl. Mater., 2016, 479: 295
29 Yan B Y , Liu Y C , Wang Z J , et al . The effect of precipitate evolution on austenite grain growth in RAFM steel [J]. Materials, 2017, 10: 1017
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!