Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (2): 155-164    DOI: 10.11900/0412.1961.2020.00500
Research paper Current Issue | Archive | Adv Search |
Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation
ZHU Bin, YANG Lan, LIU Yong(), ZHANG Yisheng
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article: 

ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation. Acta Metall Sin, 2022, 58(2): 155-164.

Download:  HTML  PDF(2488KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lightweight automobiles have a lower impact on the environment and save energy; therefore, they have become a focus within the automobile industry. Hot stamping parts made of high-strength steel have been widely used in car bodies. To study the mechanical properties and constitutive model of high-strength steel after hot stamping, the samples containing full martensite, full bainite, and martensite/bainite dual phases structure were obtained by controlling the tool's temperature and holding time during hot stamping. Then the load-displacement curves of different microstructures were obtained using nanoindentation tests. Subsequently, the modulus of elasticity, yield stress, strain hardening exponent, and other mechanical properties of these microstructures were calculated by reverse algorithms using dimensional analysis. Further, the power-law elastoplastic constitutive models of different microstructures were derived using these parameters. The errors of yield strength obtained using the reverse algorithm and tensile tests in full martensite and full bainite samples are -1.15% and 3.38%, respectively. The yield strength of the martensitic/bainite sample obtained using the reverse algorithm is 16.62%, 24.17%, and -11.78% different from that obtained by the tensile test, showing that the mechanical properties are different under macroscopic and microscopic conditions to some extent. Simultaneously, the average yield strength of the three points is only -1.41% different from that obtained using the tensile test. Finally, the derived constitutive models were verified by simulating the finite element nanoindentation. The results show that the constitutive model obtained using the inverse algorithm can accurately describe the mechanical properties of the main microstructures of high-strength steel after hot stamping.

Key words:  nanoindentation      inverse algorithm      hot stamping      martensite      bainite      micromechanical property     
Received:  14 December 2020     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(U1760205)
About author:  LIU Yong, Tel: (027)87547935, E-mail: liuyongmpe@hust.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00500     OR     https://www.ams.org.cn/EN/Y2022/V58/I2/155

Fig.1  Schematic of the experiment process
Fig.2  Cooling curves of the samples under different tools temperatures and holding time during stamping (A: austenite, B: bainite, F: ferrite, P: pearlite; M—martensite, Ms: martensite transformation starting temperature, Mf: martensite transformation finishing temperature, CCT—continuous cooling transformation)
Fig.3  SEM images of microstructures of the samples under different tools temperatures and holding time during stamping
Fig.4  Load-displacement curves of the three representative nanoindentation points (Nos.1-3)
Fig.5  SEM images of microstructures of different nanoindentation points
Fig.6  Load-displacement curve of the nanoindentation test (h—depth,P—load,hm—maximum indentation depth, Pm—maximum load, hr—residual indentation depth, C—loading curvature, Wp—plastic work, We—elastic work, Pu—unloading force, dPudhhm—initial unloading slope)
IndentationE / GPaσy / MPan
No.1212.69770.20.098
No.2215.9611470.102
No.3211.58814.90.104
Table 1  The results of the inverse analysis algorithms
Fig.7  Stress-strain curves of the specimen (400oC, 30 s) and three different indentation points calculated by the inverse algorithms in nanoindentation under the same process conditions
Fig.8  Stress-strain curves of full martensite (cold tool, 30 s) and full bainite (450oC, 240 s) specimens, and the stress-strain curves of the same structures obtained by the inverse algorithms in nanoindentation
Fig.9  Finite model of nanoindentation
Fig.10  Stress distributions in simulation
Fig.11  Load-displacement curves in tests and simulations at different indentation points
1 Liu Y , Zhu B , Wang K , et al . Friction behaviors of 6061 aluminum alloy sheets in hot stamping under dry and lubricated conditions based on hot strip drawing test [J]. Tribol. Int., 2020, 151: 106504
2 Yi H L , Chang Z Y , Cai H L , et al . Strength, ductility and fracture strain of press-hardening steels [J]. Acta Metall. Sin., 2020, 56: 429
易红亮, 常智渊, 才贺龙 等 . 热冲压成形钢的强度与塑性及断裂应变 [J]. 金属学报, 2020, 56: 429
3 Zhong Q , Shi Y , Liu B . Application of aluminum alloy in automobile lightweight [J]. Adv. Mater. Ind., 2015, (2): 23
钟 奇, 施 毅, 刘 博 . 铝合金在汽车轻量化中的应用 [J]. 新材料产业, 2015, (2): 23
4 Tong K , Han X H , Cui Z S . Thermal deformation constitutive relationship of new type high strength hot stamping steel 22MnB5(Nb&V) [J]. J. Plast. Eng., 2019, 26(6): 256
童 坤, 韩先洪, 崔振山 . 新型热冲压高强钢22MnB5 (Nb&V)的热变形本构关系 [J]. 塑性工程学报, 2019, 26(6): 256
5 Zhang S , Yang D B . Study on microstructure and properties of hot stamping high strength steel sheet for automobile [J]. Hot Work. Tech., 2019, 48(7): 145
张 帅, 杨德斌 . 热冲压成形汽车用高强钢板的组织与性能研究 [J]. 热加工工艺, 2019, 48(7): 145
6 Zhu B , Xu Z Q , Wang K , et al . Nondestructive evaluation of hot stamping boron steel with martensite/bainite mixed microstructures based on magnetic Barkhausen noise detection [J]. J. Magn. Magn. Mater., 2020, 503: 166598
7 Karbasian H , Tekkaya A E . A review on hot stamping [J]. J. Mater. Process. Technol., 2010, 210: 2103
8 Hein P , Wilsius J . Status and innovation trends in hot stamping of USIBOR 1500 P [J]. Steel Res. Int., 2008, 79: 85
9 George R , Bardelcik A , Worswick M J . Hot forming of boron steels using heated and cooled tooling for tailored properties [J]. J. Mater. Process. Technol., 2012, 212: 2386
10 Mori K , Abe Y , Osakada K , et al . Plate forging of tailored blanks having local thickening for deep drawing of square cups [J]. J. Mater. Process. Technol., 2011, 211: 1569
11 Chan S M , Chan L C , Lee T C . Tailor-welded blanks of different thickness ratios effects on forming limit diagrams [J]. J. Mater. Process. Technol., 2003, 132: 95
12 Mori K , Maeno T , Mongkolkaji K . Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping [J]. J. Mater. Process. Technol., 2013, 213: 508
13 Oliver W C , Pharr G M . An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
14 Li W L , Liu W W , Qi F , et al . Determination of micro-mechanical properties of additive manufactured alumina ceramics by nanoindentation and scratching [J] Ceram. Int., 2019, 45: 10612
15 Wang H D , Ma Y , Peng G J , et al . Evaluation of subsurface damage layer of BK7 glass via cross-sectional surface nanoindentation [J]. Precis. Eng., 2021, 67: 293
16 Kim J J , Rahman M K , Taha M M R . Examining microstructural composition of hardened cement paste cured under high temperature and pressure using nanoindentation and 29Si MAS NMR [J]. Appl. Nanosci., 2012, 2: 445
17 Nguyen N V , Pham T H , Kim S E . Characterization of strain rate effects on the plastic properties of structural steel using nanoindentation [J]. Constr. Build. Mater., 2018, 163: 305
18 Pham T H , Nguyen N V . Mechanical properties of constituent phases in structural steels and heat-affected zones investigated by statistical nanoindentation analysis [J]. Constr. Build. Mater., 2021, 268: 121211
19 Dao M , Chollacoop N , Van Vliet K J , et al . Computational modeling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Mater., 2001, 49: 3899
20 Zhu Z J . Effect of duplex microstructure of martensite/bainite on mechanical properties for hot stamped TTP parts [D]. Wuhan: Huazhong University of Science and Technology, 2019
朱周杰 . 热冲压TTP零件马氏体/贝氏体双相组织微观结构对力学性能的影响 [D]. 武汉: 华中科技大学, 2019
21 ISO . Metallic materials-instrumented indentation test for hardness and materials parameters [S]. Geneva: International Standards Association.
22 Guo D Z , Lin X , Zhao Y Q , et al . Application of nanoindentation in the research of materials [J]. Mater. Rep., 2011, 25(13): 10
郭荻子, 林 鑫, 赵永庆 等 . 纳米压痕方法在材料研究中的应用 [J]. 材料导报, 2011, 25(13): 10
23 Yan P . Research on the measurement method of constitutive relationship inversion of elastoplastic materials based on Nano indentation technology [D]. Xi'an: Xi'an University of Technology, 2019
闫 鹏 . 基于纳米压痕技术的弹塑性材料本构关系反演测量方法研究 [D]. 西安: 西安理工大学, 2019
24 Wang F J . Study on mechanical properties and size effects of lead-free BGA solder joint by nanoindentation [D]. Harbin: Harbin Institute of Technology, 2006
王凤江 . 基于纳米压痕法的无铅BGA焊点力学性能及其尺寸效应研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006
25 King R B . Elastic analysis of some punch problems for a layered medium [J]. Int. J. Solids Struct., 1987, 23: 1657
26 Guo X G , Liu Z Y , Gao H , et al . Simulation research of nanoindentation on the (001) face of KDP crystal [J]. J. Syn. Cryst., 2015, 44: 1149
郭晓光, 刘子源, 高 航 等 . KDP晶体(001)晶面纳米压痕的仿真研究 [J]. 人工晶体学报, 2015, 44: 1149
27 Zhang K H , Wen D H , Hong T , et al . Nanoindentation experiment and finite element simulation for sapphire [J]. Aviat. Precis. Manuf. Technol., 2009, 45(2): 7
张克华, 文东辉, 洪 滔 等 . 蓝宝石的纳米压痕试验与有限元仿真研究 [J]. 航空精密制造技术, 2009, 45(2): 7
28 Basantia S K , Prusty P K , Das D , et al . Micro-scale simulation of nanoindentation characteristics in dual-phase steel [J]. Mater. Today Proc., 2020, 33: 5055
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[7] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[8] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[9] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[10] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[13] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[14] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[15] JIN Xuejun,GONG Yu,HAN Xianhong,DU Hao,DING Wei,ZHU Bin,ZHANG Yisheng,FENG Yi,MA Mingtu,LIANG Bin,ZHAO Yan,LI Yong,ZHENG Jinghua,SHI Zhusheng. A Review of Current State and Prospect of the Manufacturing and Application of Advanced Hot Stamping Automobile Steels[J]. 金属学报, 2020, 56(4): 411-428.
No Suggested Reading articles found!