Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (10): 1423-1432    DOI: 10.11900/0412.1961.2020.00086
Current Issue | Archive | Adv Search |
Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy
WU Huajian1, CHENG Renshan1, LI Jingren1, XIE Dongsheng1, SONG Kai2, PAN Hucheng1(), QIN Gaowu1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Nuclear Power Institute of China, Chengdu 610213, China
Cite this article: 

WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy. Acta Metall Sin, 2020, 56(10): 1423-1432.

Download:  HTML  PDF(3084KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

There is considerable demand for high-performance, low-cost, and rare-earth-free magnesium alloys in several industrial applications because of their energy conservation potential. However, the mechanical properties of the currently available rare-earth-free magnesium alloys cannot satisfy the industrial requirements. Therefore, a novel rare-earth-free magnesium alloy with high strength, excellent ductility, and good formability must be urgently developed. In this study, the microstructure and mechanical properties of the Mg-2.5Sn-2Ca-xAl (x=2, 4, and 9, mass fraction, %) alloys in the as-cast and extruded states when different amounts of Al content are added are systematically studied. As indicated by the results, the strength and elongation of the alloy decrease and increase, respectively, with the increasing Al content. The yield strengths of the Mg-2.5Sn-2Ca-2Al, Mg-2.5Sn-2Ca-4Al, and Mg-2.5Sn-2Ca-9Al alloys are approximately 370, 325, and 290 MPa, respectively, and their elongations are approximately 6.2%, 11.0%, and 12.0%, respectively. The type and content of the nanosecond phase of the Mg-Sn-Ca-based alloy changed because of the addition of the fourth type of Al element. High-density G.P. zones and a second phase of Mg17Al12 can be observed in the extruded Mg-2.5Sn-2Ca-2Al and Mg-2.5Sn-2Ca-9Al alloys, respectively; however, nanophase precipitation cannot be observed in case of the extruded Mg-2.5Sn-2Ca-4Al alloy. The high-density G.P. zones hinder the growth of the recrystallized grains more efficiently than the Mg17Al12 nanophase; thus, the recrystallized grains of the extruded Mg-2.5Sn-2Ca-2Al alloys are finer (approximately 0.5 μm) than the extruded Mg-2.5Sn-2Ca-9Al alloy. Based on TEM images, high-density dislocations can be observed inside the extruded Mg-2.5Sn-2Ca-2Al alloy grains and G.P. zones can be observed toward the side of the dislocations; thus, the high density subgrain lamella structure is retained in the alloy (lamella thickness: 0.2~1.0 μm). The movement of the newly generated dislocations is inhibited by the large number of G.P. zones and residual dislocations, increasing the yield strength and decreasing the plasticity of the Mg-2.5Sn-2Ca-2Al alloy. The Mg17Al12 nanophase that was formed in the Mg-2.5Sn-2Ca-9Al alloy because of the addition of high Al content exhibits a weak ability to hinder the movement of the dislocations, resulting in low-density residual dislocation. Therefore, the Mg-2.5Sn-2Ca-9Al alloy, exhibits a large grain size, low yield strength and high plasticity.

Key words:  Mg alloy      grain refinement      second phase      dynamic recrystallization      strength     
Received:  19 March 2020     
ZTFLH:  TG146.22  
Fund: National Natural Science Foundation of China(51525101);National Natural Science Foundation of China(U1610253);National Natural Science Foundation of China(51971053);Fundamental Research Funds for the Central Universities of China(N2002011);China Association for Science and Technology Youth Talent Support Projcet(2019-2021QNRC001);China Association for Science and Technology Youth Talent Support Projcet(2019-2021QNRC002);Xingliao Talent Program(XLYC1808038);Liaoning Province-Shenyang National Research Center for Materials Science Joint Fund Project(2019JH3/30100040)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00086     OR     https://www.ams.org.cn/EN/Y2020/V56/I10/1423

AlloySnCaAlMg
Mg-2.5Sn-2Ca-2Al2.321.832.05Bal.
Mg-2.5Sn-2Ca-4Al2.481.954.25Bal.
Mg-2.5Sn-2Ca-9Al2.592.128.63Bal.
Table 1  Actual compositions of Mg-2.5Sn-2Ca-xAl alloys
Fig.1  Engineering stress-strain tensile curves of extruded Mg-2.5Sn-2Ca-xAl alloys
Alloy

σs

MPa

σb

MPa

δ

%

Mg-2.5Sn-2Ca-2Al3704006.2
Mg-2.5Sn-2Ca-4Al32534011.0
Mg-2.5Sn-2Ca-9Al29035412.0
Table 2  Mechanical properties of Mg-2.5Sn-2Ca-xAl alloys
Fig.2  OM (a, c, e) and SEM (b, d, f) images of as-cast Mg-2.5Sn-2Ca-xAl alloys with x=2 (a, b), x=4 (c, d) and x=9 (e, f)
PositionMgSnCaAlAl/(Sn+Ca)Phase
170.2910.1012.017.520.34MgSnCa
275.680.067.6716.562.14Al2Ca
377.2911.1010.051.540.07MgSnCa
474.750.096.9118.202.60Al2Ca
575.0111.3910.712.880.13MgSnCa
671.770.116.9121.263.03Al2Ca
Table 3  EDS results of positions 1~6 in Fig.2
Fig.3  XRD spectra of as-cast Mg-2.5Sn-2Ca-xAl alloys
Fig.4  OM (a, c, e) and TEM (b, d, f) images of the extruded Mg-2.5Sn-2Ca-xAl alloys with x=2 (a, b), x=4 (c, d) and x=9 (e, f), and (0002) pole figures (insets in Figs.4a, c and e) measured by XRD (ED—extrusion direction, TD—transverse direction, RD—rolling direction, DRX—dynamic recrystallization)
Color online
Fig.5  SEM images of extruded Mg-2.5Sn-2Ca-xAl alloys with x=2 (a), x=4 (b) and x=9 (c)
PositionMgSnCaAlAl/(Sn+Ca)Phase
190.463.643.931.980.26MgSnCa
251.520.0915.3433.052.14Al2Ca
387.655.525.281.550.14MgSnCa
460.770.099.5929.553.05Al2Ca
556.4721.1318.753.650.09MgSnCa
649.310.0212.1238.553.18Al2Ca
Table 4  EDS results of positions 1~6 in Fig.5
Fig.6  TEM images showing the microstructures of the extruded Mg-2.5Sn-2Ca-xAl alloy with x=2 (a~c), x=4 (d~f) and x=9 (g~i) (The red asterisks in the figure show the low-angular grain boundaries. The blue arrows show the G.P. zones, the red arrows show the dislocations, and the purple arrows show the nano-scaled Mg17Al12 phases)
Color online
Fig.7  TEM images of the extruded Mg-2.5Sn-2Ca-2Al alloy with the G.P. zones and residual dislocations (a, b) (The blue arrows show the G.P. zones, and the red arrows show the dislocations)
Color online
[1] Sheng K, Lu L W, Xiang Y, et al. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion [J]. J. Magnesium Alloys, 2019, 7: 717
doi: 10.1016/j.jma.2019.09.006
[2] Chai Y F, Song Y, Jiang B, et al. Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets [J]. J. Magnesium Alloys, 2019, 7: 545
doi: 10.1016/j.jma.2019.09.007
[3] Liu L Z, Chen X H, Pan F S, et al. A new high-strength Mg-Zn-Ce-Y-Zr magnesium alloy [J]. J. Alloys Compd., 2016, 688: 537
doi: 10.1016/j.jallcom.2016.07.144
[4] Peng P, She J, Tang A T, et al. Novel continuous forging extrusion in a one-step extrusion process for bulk ultrafine magnesium alloy [J]. Mater. Sci. Eng., 2019, A764: 138144
[5] Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
[6] Liu W C, Zhou B P, Wu G H, et al. High temperature mechanical behavior of low-pressure sand-cast Mg-Gd-Y-Zr magnesium alloy [J]. J. Magnesium Alloys, 2019, 7: 597
doi: 10.1016/j.jma.2019.07.006
[7] Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion [J]. Scr. Mater., 2009, 61: 644
doi: 10.1016/j.scriptamat.2009.06.003
[8] Wang Q D, Chen J, Zhao Z, et al. Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy [J]. Mater. Sci. Eng., 2010, A528: 323
[9] Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
doi: 10.1016/j.matdes.2015.06.032
[10] Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Mater., 2018, 149: 350
doi: 10.1016/j.actamat.2018.03.002
[11] Kim D H, Lee J Y, Lim H K, et al. The Effect of microstructure evolution on the elevated temperature mechanical properties in Mg-Sn-Ca system [J]. Mater. Trans., 2008, 49: 2405
doi: 10.2320/matertrans.MER2008140
[12] Zhong L P, Wang Y J, Dou Y C. On the improved tensile strength and ductility of Mg-Sn-Zn-Mn alloy processed by aging prior to extrusion [J]. J. Magnesium Alloys, 2019, 7: 637
doi: 10.1016/j.jma.2019.07.007
[13] Nayyeri G, Mahmudi R. Effects of Ca additions on the microstructural stability and mechanical properties of Mg-5%Sn alloy [J]. Mater. Des., 2011, 32: 1571
doi: 10.1016/j.matdes.2010.09.019
[14] Chai Y F, Jiang B, Song J F, et al. Effects of Zn and Ca addition on microstructure and mechanical properties of as-extruded Mg-1.0Sn alloy sheet [J]. Mater. Sci. Eng., 2019, A746: 82
[15] Elamami H A, Incesu A, Korgiopoulos K, et al. Phase selection and mechanical properties of permanent-mold cast Mg-Al-Ca-Mn alloys and the role of Ca/Al ratio [J]. J. Alloys Compd., 2018, 764: 216
doi: 10.1016/j.jallcom.2018.05.309
[16] Li Z T, Qiao X G, Xu C, et al. Ultrahigh strength Mg-Al-Ca-Mn extrusion alloys with various aluminum contents [J]. J. Alloys Compd., 2019, 792: 130
doi: 10.1016/j.jallcom.2019.03.319
[17] Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
[18] Jayaraj J, Mendis C L, Ohkubo T, et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition [J]. Scr. Mater., 2010, 63: 831
doi: 10.1016/j.scriptamat.2010.06.028
[19] Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
doi: 10.1016/j.actamat.2018.07.054
[20] Huang Q Y, Liu Y, Zhang A Y, et al. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38: 39
doi: 10.1016/j.jmst.2019.06.025
[21] Bai J, Sun Y S, Xue F, et al. Effect of Al contents on microstructures, tensile and creep properties of Mg-Al-Sr-Ca alloy [J]. J. Alloys Compd., 2007, 437: 247
doi: 10.1016/j.jallcom.2006.07.096
[22] She J, Peng P, Xiao L, et al. Development of high strength and ductility in Mg-2Zn extruded alloy by high content Mn-alloying [J]. Mater. Sci. Eng., 2019, A765: 138203
[23] Bhattacharyya J J, Nakata T, Kamado S, et al. Origins of high strength and ductility combination in a Guinier-Preston zone containing Mg-Al-Ca-Mn alloy [J]. Scr. Mater., 2019, 163: 121
doi: 10.1016/j.scriptamat.2019.01.013
[24] Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
doi: 10.1016/j.actamat.2017.03.046
[25] Xie H B, Pan H C, Ren Y P, et al. Magnesium alloys strengthened by nanosaucer precipitates with confined new topologically close-packed structure [J]. Cryst. Growth Des., 2018, 18: 5866
doi: 10.1021/acs.cgd.8b00542
[26] Guo K X, Ye H Q, Wu Y K. Application of Electron Diffraction Pattern in Crystallography [M]. Beijing: Science Press, 1983: 233
(郭可信, 叶恒强, 吴玉琨. 电子衍射图在晶体学中的应用 [M]. 北京: 科学出版社, 1983: 233)
[27] Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook for Materials Science [M]. Boston, MA: Springer, 1996: 1
[28] Peng W D, Xiao X W, Pan H C, et al. Effects of Ce, Sr alloying on second phases of Mg-Sn-Ca alloy in cast and homogenized states [J]. Hot Work. Technol., 2018, 47(5): 73
(彭卫丹, 肖新蔚, 潘虎成等. Ce、Sr合金化对铸态及均匀化态Mg-Sn-Ca合金第二相的影响 [J]. 热加工工艺, 2018, 47(5): 73)
[29] Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
[30] Kozlov A, Ohno M, Arroyave R, et al. Phase equilibria, thermodynamics and solidification microstructures of Mg-Sn-Ca alloys, Part 1: Experimental investigation and thermodynamic modeling of the ternary Mg-Sn-Ca system [J]. Intermetallics, 2008, 16: 299
doi: 10.1016/j.intermet.2007.10.010
[31] Kozlov A, Ohno M, Leil T A, et al. Phase equilibria, thermodynamics and solidification microstructures of Mg-Sn-Ca alloys, Part 2: Prediction of phase formation in Mg-rich Mg-Sn-Ca cast alloys [J]. Intermetallics, 2008, 16: 316
doi: 10.1016/j.intermet.2007.10.011
[32] Suzuki A, Saddock N D, Jones J W, et al. Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys [J]. Acta Mater., 2005, 53: 2823
doi: 10.1016/j.actamat.2005.03.001
[33] Suzuki A, Saddock N D, Jones J W, et al. Structure and transition of eutectic (Mg, Al)2Ca Laves phase in a die-cast Mg-Al-Ca base alloy [J]. Scr. Mater., 2004, 51: 1005
doi: 10.1016/j.scriptamat.2004.07.011
[34] Máthis K, Trojanová Z, Lukáč P, et al. Modeling of hardening and softening processes in Mg alloys [J]. J. Alloys Compd., 2004, 378: 176
doi: 10.1016/j.jallcom.2003.10.098
[35] Huang H, Liu H, Wang C, et al. Potential of multi-pass ECAP on improving the mechanical properties of a high-calcium-content Mg-Al-Ca-Mn alloy [J]. J. Magnesium Alloys, 2019, 7: 617
doi: 10.1016/j.jma.2019.04.008
[36] Duchaussoy A, Sauvage X, Edalati K, et al. Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles [J]. Acta Mater., 2019, 167: 89
doi: 10.1016/j.actamat.2019.01.027
[37] Yuan W, Panigrahi S K, Su J Q, et al. Influence of grain size and texture on Hall-Petch relationship for a magnesium alloy [J]. Scr. Mater., 2011, 65: 994
doi: 10.1016/j.scriptamat.2011.08.028
[38] Liu L Z, Chen X H, Pan F S, et al. Microstructure, texture, mechanical properties and electromagnetic shielding effectiveness of Mg-Zn-Zr-Ce alloys [J]. Mater. Sci. Eng., 2016, A669: 259
[39] Zheng R X, Bhattacharjee T, Gao S, et al. Change of deformation mechanisms leading to high strength and large ductility in Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained microstructures [J]. Sci. Rep., 2019, 9: 11702
doi: 10.1038/s41598-019-48271-5 pmid: 31406235
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[7] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[12] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[13] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[14] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[15] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
No Suggested Reading articles found!