Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (3): 333-339    DOI: 10.11900/0412.1961.2019.00274
Current Issue | Archive | Adv Search |
Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy
CAO Yuhan1,WANG Lilin2,WU Qingfeng2,HE Feng2(),ZHANG Zhongming1,WANG Zhijun2
1. Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi‘an 710072, China
Download:  HTML  PDF(16723KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, high-entropy alloys have triggered broad research interests due to their unique and intriguing mechanical properties. In general, the increase in strength is accompanied by the reduction in ductility. Therefore, strong and ductile metallic materials have always been pursued by metallurgist. Heterogeneous structure has been reported to be very useful for overcoming the strength-ductility trade-off in metallic materials. In this work, typical partially recrystallized structure has been obtained in CoCrFeNiMo0.2 high-entropy alloy by cryogenic rolling and annealing. The effect of partially recrystallized structure on the mechanical properties has been studied. After 35% cold rolling (RTR35%) and 35% cryogenic rolling (CTR35%) and annealed at 800 ℃ for 30 min, CoCrFeNiMo0.2 high-entropy alloys developed partially recrystallization microstructures featured by coarse deformed grains and fine recrystallized grains. The yield strength of the CTR35% sample is 539.3 MPa and its elongation is 46.8%, which is similar in strength but 30% higher in elongation when compared with the RTR35% sample. This can be understood from the fact that samples rolled at cryogenic temperature showed a higher volume fraction of fine recrystallized grains, resulting in better strain hardening capability.

Key words:  high-entropy alloy      rolling deformation      annealing treatment      partially recrystallized structure      mechanical property     
Received:  16 August 2019     
ZTFLH:  TG335.12  
Fund: National Key Research and Development Program of China(2018YFC0310400)
Corresponding Authors:  Feng HE     E-mail:  fenghe@mail.nwpu.edu.cn

Cite this article: 

CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy. Acta Metall Sin, 2020, 56(3): 333-339.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00274     OR     https://www.ams.org.cn/EN/Y2020/V56/I3/333

Fig.1  Microhardnesses of CoCrFeNiMo0.2 high-entropy alloy samples under different heat treatment conditions
Fig.2  XRD spectrum (a) and OM image (b) of CoCrFeNiMo0.2 high-entropy alloy under initial condition
Fig.3  OM images of the CoCrFeNiMo0.2 high-entropy alloy samples of RTR35% (a), CTR35% (b), RTR35%+800 ℃, 30 min (c) and CTR35%+800 ℃, 30 min (d)
Fig.4  Inverse pole figures (IPFs) (a, c) and Kernel average misorientations (KAMs) (b, d) images of the CoCrFeNiMo0.2 high-entropy alloy samples of RTR35%+800 ℃, 30 min (a, b) and CTR35%+800 ℃, 30 min (c, d)Color online
Fig.5  Engineering stress-engineering strain curves (a) and work hardening rate curves (b) of CoCrFeNiMo0.2 high-entropy alloy samples of initial condition, RTR35%, CTR35% and their heat treated samplesColor online
Sampleσy / MPaσb / MPaδ / %
Initial condition248.2623.184.7
RTR35%886.6976.412.8
CTR35%937.41018.310.7
RTR35%+800 ℃, 30 min545.9813.536.1
CTR35%+800 ℃, 30 min539.3829.946.8
Table 1  Yield strengths (σy), ultimate tensile strengths (σb) and elongations (δ) for CoCrFeNiMo0.2high-entropy alloy samples of initial condition, RTR35%, CTR35% and their heat treated samples
Fig.6  Low (a, c) and high (b, d) magnified SEM images of CoCrFeNiMo0.2 high-entropy alloy samples of RTR35%+800 ℃, 30 min (a, b) and CTR35%+800 ℃, 30 min (c, d)
[1] Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
[2] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
[3] Wang Z J, Huang Y H, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scr. Mater., 2015, 94: 28
[4] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
[5] Granberg F, Nordlund K, Ullah M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys [J]. Phys. Rev. Lett., 2016, 116: 135504
[6] Zyka J, Málek J, Pala Z, et al. Structure and mechanical properties of TaNbHfZrTi high entropy alloy [A]. Metal 2015 [C]. Brno, Czech Republic, EU, 2015: 1687
[7] Jo Y H, Jung S, Choi W M, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy [J]. Nat. Commun., 2017, 8: 15719
[8] Cai B, Liu B, Kabra S, et al. Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction [J]. Acta Mater., 2017, 127: 471
[9] Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
[10] Wei S L, Kim J, Tasan C C. Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys [J]. Acta Mater., 2019, 168: 76
[11] Wei D X, Li X Q, Jiang J, et al. Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys [J]. Scr. Mater., 2019, 165: 39
[12] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
[13] Lu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
[13] 吕昭平, 雷智锋, 黄海龙等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
[14] Sun S J, Tian Y Z, Lin H R, et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure [J]. Mater. Des., 2017, 133: 122
[15] Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
[16] Shun T T, Chang L Y, Shiu M H. Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy [J]. Mater. Character., 2013, 81: 92
[17] He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
[18] Wu W Q, Guo L, Liu B, et al. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy [J]. Philos. Mag., 2017, 97: 3229
[19] Li Z M, Raabe D. Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties [J]. JOM, 2017, 69: 2099
[20] Ming K S, Bi X F, Wang J. Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures [J]. Int. J. Plast., 2019, 113: 255
[21] Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
[22] Wu S W, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure [J]. Acta Mater., 2019, 165: 444
[23] Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
[24] Liu J L, Umemoto M, Todaka Y, et al. Formation of a nanocrystalline surface layer on steels by air blast shot peening [J]. J. Mater. Sci., 2007, 42: 7716
[25] Balusamy T, Narayanan T S N S, Ravichandran K, et al. Effect of surface mechanical attrition treatment (SMAT) on pack boronizing of AISI 304 stainless steel [J]. Surf. Coat. Technol., 2013, 232: 60
[26] Li J S, Cao Y, Gao B, et al. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure [J]. J. Mater. Sci., 2018, 53: 10442
[27] Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
[28] Bae J W, Moon J, Jang M J, et al. Trade-off between tensile property and formability by partial recrystallization of CrMnFeCoNi high-entropy alloy [J]. Mater. Sci. Eng., 2017, A703: 324
[29] Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy [J]. Intermetallics, 2015, 59: 8
[30] He F, Wang Z J, Wu Q F, et al. Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy [J]. Scr. Mater., 2018, 155: 134
[31] Dan Sathiaraj G, Bhattacharjee P P, Tsai C W, et al. Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy [J]. Intermetallics, 2016, 69: 1
[32] Bhattacharjee T, Wani I S, Sheikh S, et al. Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing [J]. Sci. Rep., 2018, 8: 3276
[33] Wang J, Guo T, Li J S, et al. Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 192
[34] Courtney T H. Mechanical Behavior of Materials [M]. 2nd Ed, Long Grove, IL: Waveland Press, 2005: 186
[35] Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
[36] Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[5] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[7] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[11] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[12] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[13] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[14] Xingpin CHEN,Wenjia LI,Ping REN,Wenquan CAO,Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels[J]. 金属学报, 2019, 55(8): 951-957.
[15] Ling LI,Shenglian YAO,Xiaoli ZHAO,Jiajia YANG,Yexi WANG,Luning WANG. Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy[J]. 金属学报, 2019, 55(8): 1008-1018.
No Suggested Reading articles found!