Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (4): 480-488    DOI: 10.11900/0412.1961.2018.00241
Current Issue | Archive | Adv Search |
Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy
Dechun REN1,2,Huhu SU1,2,Huibo ZHANG1,Jian WANG1,Wei JIN1,2(),Rui YANG1,2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Download:  HTML  PDF(19419KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TB9 titanium alloy has been widely used for aerospace due to it's superior low stiffness, corrosion resistance and workability. It has been reported that cold deformation can improve the comprehensive mechanical properties of titanium alloys. At the same time, the cold rotary-swaging deformation facilitates the production of small batches and the acquisition of special shape and size bars. However, current studies on the microstructure and properties of cold rotary-swaged titanium alloys are not systematic. So, the effects of cold deformation rate on the microstructure, texture evolution and mechanical property of TB9 alloy during cold rotary-swaging were investigated using OM, EBSD, XRD, TEM and tensile test. The results showed that the grain size of TB9 titanium was refined with the increase in diameter reduction. Meanwhile, with the deformation increases, the grains rotation along the swaging axis occurs, forming a preferred orientation, the textures change from initial {001}<110> and {001}<100> to α-fiber and γ-fiber {001}<110>, {112}<110> and {111}<110>. All of grains refinement, texture components and substructures contributed to the enhancement of strength after cold rotary-swaging. And the ductile kept on a high level after 70% cold working, which means the TB9 titanium has a great cold deformation ability.

Key words:  TB9 titanium alloy      cold rotary-swaging deformation      microstructure      texture      tensile property     
Received:  15 March 2018     
ZTFLH:  TG146.2  
Corresponding Authors:  Wei JIN     E-mail:  wjin@imr.ac.cn

Cite this article: 

Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy. Acta Metall Sin, 2019, 55(4): 480-488.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00241     OR     https://www.ams.org.cn/EN/Y2019/V55/I4/480

Fig.1  OM image (a), TEM image and SAED pattern (b) and EBSD analyses (c~e) of the solution microstructure of TB9 titanium alloy (The red lines and green lines in Fig.1e indicate high-angle grain boundaries (HAGBs) with misorientation angles of over 15o and low-angle grain boundaries (LAGBs) with misorientation angles of 2o~15o, respectively. RD—rolling direction)
Fig.2  
Fig.3  OM images (a~c) and EBSD analyses (d~f) of TB9 titanium alloy under cold rotary-swaging rates of 15% (a, d), 35% (b, e) and 70% (c, f) (RS—rotary-swaging direction)
Fig.4  
Fig.5  TEM images of TB9 titanium alloy under cold rotary-swaging rates of 15% (a), 35% (b), 70% (c), and SAED pattern of bright band under 70% cold rotary-swaging rate (d) (Inset in Fig.5c show the SAED pattern of dark band)
Fig.6  EBSD contrast band map showing sheer bands of TB9 titanium alloy under cold rotary-swaging rate of 70% (a) and distribution of misorientation along the arrow in Fig.6a (b)
Fig.7  Pole figures of TB9 titanium alloy under cold rotary-swaging rates of 15% (a), 35% (b) and 70% (c)
Fig.8  Sections (φ2=45o) of orientation distribution functions (ODFs) of solution treated TB9 titanium alloy (a) and under cold rotary-swaging rates of 10% (b), 30% (c) and 40% (d)
Fig.9  

Rotary-swaging rate

%

Rp0.2

MPa

Rm

MPa

A

%

Z

%

0890.5896.028.863.0
10962.0963.510.457.0
151045.01049.514.357.0
201087.01089.511.456.0
251128.51130.08.148.0
301146.01152.07.747.5
351206.01210.59.450.5
401191.51192.09.250.0
701350.01350.57.943.5
Table 1  Room temperature tensile properties of TB9 titanium alloy under different cold rotary-swaging rates
Fig.10  Distributions of grain size of TB9 titanium alloy under cold rotary-swaging rates of 10% (a), 35% (b) and 70% (c) with critical orientation angle 2o
1 Huang X, Cuddy J, Goel N, et al. Effect of heat treatment on the microstructure of a metastable β-titanium alloy [J]. J. Mater. Eng. Perform., 1994, 3: 560
2 Tian Y X, Li S J, Hao Y L, et al. High temperature deformation behavior and microstructure evolution mechanism transformation in Ti2448 alloy [J]. Acta Metall. Sin., 2012, 48: 837
2 田宇兴, 李述军, 郝玉琳等. Ti2448合金高温变形行为及组织演变机制的转变 [J]. 金属学报, 2012, 48: 837
3 Boyer R R, Brigge R D. The use of β titanium alloys in the aerospace industry [J]. J. Mater. Eng. Perform., 2005, 14: 681
4 Huang L J, Wang J, Zhang H B, et al. Effects of cold drawing deformation and aging temperature on microstructure and mechanical properties of TB9 titanium alloy [J]. Chin. J. Nonferrous Met., 2013, 23(Special 1): s11
4 黄鎏杰, 王 健, 张慧博等. 冷拉拔变形量和时效温度对TB9钛合金丝材组织和性能的影响 [J]. 中国有色金属学报, 2013, 23(专辑1): s11)
5 Xu X, Dong L M, Ba H B, et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2874
6 Rack H J. Plastic deformation of unaged RMI 38644 [J]. Scr. Mater., 1976, 10: 739
7 Banumathy S, Mandal R K, Singh A K. Texture and anisotropy of hot rolled Ti-16Nb alloy [J]. J. Alloys Compd., 2010, 500: L26
8 Dai S J, Wang Y, Chen F, et al. Effect of cold deformation on microstructure and mechanical properties of Ti-35Nb-9Zr-6Mo-4Sn alloy for biomedical applications [J]. Mater. Sci. Eng., 2013, A575: 35
9 Zhang Z Q, Dong L M, Guan S X, et al. Microstructure and mechanical properties of TC16 titanium alloy by room temperature roller die drawing [J]. Acta Metall. Sin., 2017, 53: 415
9 张志强, 董利民, 关少轩等. TC16钛合金辊模拉丝过程中的显微组织和力学性能 [J].金属学报, 2017, 53: 415
10 Fang S M, Lei T, Zhang Y L, et al. Application study on swaging special-shaped non-ferrous metal wire of lower plasticity [J]. Forg. Stamp. Technol., 2007, 32(5): 69
10 方树铭, 雷 霆, 张玉林等. 旋锻法加工低塑性有色金属异型材的应用研究 [J]. 锻压技术, 2007, 32(5): 69)
11 Zheng B Z, Tang X X, Tian X L, et al. Treatment methods on relative motion between clamp and hammer in numerical simulation of rotary forging for titanium alloy wire [J]. Forg. Stamp. Technol., 2017, 42(10): 195
11 郑帮智, 唐新新, 田晓琳等. 钛合金线材旋锻数值仿真中夹具与锤头相对运动的处理方法 [J]. 锻压技术, 2017, 42(10): 195)
12 Guo W Y, Xing H, Sun J. EBSD and TEM studies of deformation structure of metastable β-type titanium alloy after cold-swaging [J]. J. Chin. Electron Micros. Soc., 2008, 27: 469
12 郭文渊, 邢 辉, 孙 坚. 亚稳态β钛合金冷旋锻形变组织的EBSD和TEM研究 [J]. 电子显微学报, 2008, 27: 469
13 Pachla W, Kulczyk M, Przybysz S, et al. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2 [J]. J. Mater. Process.Technol., 2015, 221: 255
14 Alkhazraji H, El-Danaf E, Wollmann M, et al. Enhanced fatigue strength of commercially pure Ti processed by rotary swaging [J]. Adv. Mater. Sci. Eng., 2015, 2015: 301837
15 Wang H F, Han J T, Hao Q L. Influence of mandrel on the performance of titanium tube with cold rotary swaging [J]. Mater. Manuf. Processes, 2015, 30: 1251
16 Ide N, Morita T, Takahashi K, et al. Influence of cold rolling on fundamental properties of Ti-15V-3Cr-3Sn-3Al alloy [J]. Mater. Trans., 2015, 56: 1800
17 Sun J F, Zhang Z W, Zhang M L, et al. Microstructure evolution and their effects on the mechanical properties of TB8 titanium alloy [J]. J. Alloys Compd., 2016, 663: 769
18 Chung C C, Wang S W, Chen Y C, et al. Effect of cold rolling on structure and tensile properties of cast Ti-7.5Mo alloy [J]. Mater. Sci. Eng., 2015, A631: 52
19 Cai S, Bailey D M, Kay L E. Effect of annealing and cold work on mechanical properties of beta III titanium [J]. J. Mater. Eng. Perform., 2012, 21: 2559
20 Xu T W, Li J S, Zhang S S, et al. Cold deformation behavior of the Ti-15Mo-3Al-2.7Nb-0.2Si alloy and its effect on α precipitation and tensile properties in aging treatment [J]. J. Alloys Compd., 2016, 682: 404
21 Wu X, Tao N, Hong Y, et al. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP [J]. Acta Mater., 2002, 50: 2075
22 Zhao H L, Ni S, Song M, et al. Grain refinement via formation and subdivision of microbands and thin laths structures in cold-rolled hafnium [J]. Mater. Sci. Eng., 2015, A645: 328
23 Engler O, Tomé C N, Huh M Y. A study of through-thickness texture gradients in rolled sheets [J]. Metall. Mater. Trans., 2000, 31A: 2299
24 Miyamoto H, Xiao T, Uenoya T, et al. Effect of simple shear deformation prior to cold rolling on texture and ridging of 16% Cr ferritic stainless steel sheets [J]. ISIJ Int., 2010, 50: 1653
25 Ray R K, Jonas J J, Hook R E. Cold rolling and annealing textures in low carbon and extra low carbon steels [J]. Int. Mater. Rev.,1994, 39: 129
26 Conrad H. Effect of interstitial solutes on the strength and ductility of titanium [J]. Prog. Mater. Sci., 1981, 26: 123
27 Zhang Y W, Li S J, Obbard E G, et al. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure [J]. Acta Mater., 2011, 59: 3081
28 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[5] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[6] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[7] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[8] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[9] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[10] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[11] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[12] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[13] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[14] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[15] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
No Suggested Reading articles found!