1 National Engineering Research Center of Die and Mold CAD, Shanghai Jiao Tong University, Shanghai 200030, China 2 Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China
Cite this article:
Xifeng LI, Nannan CHEN, Jiaojiao LI, Xueting HE, Hongbing LIU, Xingwei ZHENG, Jun CHEN. Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy. Acta Metall Sin, 2017, 53(8): 968-974.
Since the thermal expansion coefficient of Invar 36 alloy is so low that it matches the composite materials well. It is very suitable as the material of composite material forming mould. Invar 36 alloy mould surface is usually produced by hot pressing technology. The hot pressing temperature and strain rate severely affect the quality of mould surface. In this work, the mechanical properties of Invar 36 alloy were studied in the temperature range from room temperature to 900 ℃ under different initial strain rates (8×10-5, 8×10-4 and 8×10-3 s-1) by using uniaxial tensile tests. The effect of temperature on the springback trend of thick Invar 36 alloy sheet by three-point bending tests at room temperature, 600 ℃ and 800 ℃ was investigated. The results indicate that the yield strength and ultimate tensile strength of Invar 36 alloy significantly decrease with increasing temperature. Meanwhile, the elongation firstly increases and then decreases with the increase of temperature. It reaches a peak value of 69.2% at 600 ℃ and increases by 55% than that at ambient temperature, which mainly results from the plasticity improvement by dynamic recrystallization. Invar 36 alloy at lower temperature (room temperature and 500 ℃) shows insensitive to the strain rate. Nevertheless, the strength and plasticity at 800 ℃ substantially decrease with decreasing strain rate. When the strain rate decreases from 8×10-3 s-1 to 8×10-5 s-1, the yield strength, ultimate tensile strength and elongation reduce by 38%, 47% and 50%, respectively. The three-point bending springback value decreases by 87.0% when the tested temperature increases from room temperature to 800 ℃.
Fig.2 Macroscopic fractographies of the specimens stretched at different temperatures
Fig.3 Engineering stress-strain curves of Invar 36 alloy stretched at different temperatures
Temperature
Yield strength
Ultimate tensile
Elongation
℃
MPa
strength
%
MPa
Room temp.
292
447
44.7
210
185
352
45.7
500
113
267
49.5
600
81
203
69.2
700
71
138
59.1
800
56
88
38.5
900
34
51
38.0
Table 1 Mechanical properties of Invar 36 alloy tested at different temperatures (8×10-4 s-1)
Fig.4 OM images of Invar 36 alloy as-received (a) and after tension at room temperature (b), 210 ℃ (c), 500 ℃ (d), 600 ℃ (e), 700 ℃ (f), 800 ℃ (g) and 900 ℃ (h)
Fig.5 OM images of longitudinal section near high-temperature tensile fracture of Invar 36 alloy at 600 ℃ (a), 700 ℃ (b) and 800 ℃ (c)
Fig.6 Effects of strain rates on engineering stress-strain curves of Invar 36 alloy at room temperature (a), 500 ℃ (b) and 800 ℃ (c)
Temperature / ℃
αf / (o)
αi / (o)
Δα / (o)
Ks / %
Room temperature
34.85
38.60
3.75
10.8
600
31.50
32.95
1.45
4.6
800
32.15
32.60
0.45
1.4
Table 2 Experimental data of three-point bending springback of thick Invar 36 alloy sheet at different temperatures
[1]
Nan J M, Li G X, Xu K W.Yielding behavior of low expansion invar alloy at elevated temperature[J]. J. Mater. Process. Technol., 2001, 114: 36
[2]
Wang J P.Process development for invar shadow mask[J]. Vac. Electron., 1999, (4): 54(王建平. 殷钢荫罩的加工工艺[J]. 真空电子技术, 1999, (4): 54)
Gibbons G, Wimpenny D.Mechanical and thermomechanical properties of metal spray invar for composite forming tooling[J]. J. Mater. Eng. Perform., 2000, 9: 630
[5]
Ha T K, Min S H.Effect of C content on the microstructure and physical properties of Fe-36Ni Invar alloy[J]. Mater. Sci. Forum, 2015, 804: 293
[6]
Zhao Y, Sato Y S, Kokawa H, et al.Microstructure and properties of friction stir welded high strength Fe-36 wt%Ni alloy[J]. Mater. Sci. Eng., 2011, A528: 7768
[7]
DeBra D B. Vibration isolation of precision machine tools and instruments[J]. CIRP Ann. Manuf. Technol., 1992, 41: 711
[8]
Wimpenny D I, Gibbons G J.Metal spray invar tooling for composites[J]. Aircr. Eng. Aerosp. Technol., 2000, 72: 430
[9]
Schell W R. Invar tooling for composites, tooling for composites [R]. Long Beach, CA: Society of Manufacturing Engineers, 1989, TE89/503: 1
[10]
Durham S, Duquenne C.New developments in the manufacture of invar tooling for composite components [A]. Proceedings of the 71st Annual Forum[C]. Virginia Beach, Virginia: American Helicopter Society International, Inc., 2015: 1803
[11]
Xiong W, Zhang H, Vitos L, et al.Magnetic phase diagram of the Fe-Ni system[J]. Acta Mater., 2011, 59: 521
[12]
Zhang J M.Welding process optimization for Invar steel mold used in civil aircraft composite structures [D]. Harbin: Harbin Institute of Technology, 2013(张家铭. 民机复材结构用Invar钢模具焊接工艺优化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
Yang B, Li H, Cao Z H.Application of Invar in mould for composites[J]. Fiber Reinf. Plast./Compos., 2010, (6): 68(杨博, 李宏, 曹正华. 殷钢在复合材料成形模具中的应用[J]. 玻璃钢/复合材料, 2010, (6): 68)
[15]
Vinogradov A, Hashimoto S, Kopylov V I.Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni Invar alloy[J]. Mater. Sci. Eng., 2003, A355: 277
[16]
Huang G H, Zhang D M, Yan D X, et al.Manufacturing technology research on Invar steel mould[J]. Adv. Aeron. Sci. Eng., 2011, 2: 485(黄钢华, 张冬梅, 晏冬秀等. Invar钢模具制造工艺研究[J]. 航空工程进展, 2011, 2: 485)
[17]
Michler T.Influence of gaseous hydrogen on the tensile properties of Fe-36Ni INVAR alloy[J]. Int. J. Hydrogen Energy, 2014, 39: 11807
[18]
Nan J M, Li G X, Xu K W, et al.Elevated temperature deformation behaviour and mechanical characteristics of Invar alloy used for shadow mask[J]. J. Mater. Eng., 2001, 1(1): 19(南俊马, 李光新, 徐可为等. 显示器荫罩用因瓦合金的高温变形行为与力学特性[J]. 材料工程, 2001, 1(1): 19)
[19]
Yuan J P, Yi D Q, Yu Z M, et al.Influence of the deformation and heat treatment on the microstructures and properties of Invar alloy[J]. Heat Treat. Met., 2005, 30(2): 50(袁均平, 易丹青, 余志明等. 变形与热处理对Invar合金组织及性能的影响[J]. 金属热处理, 2005, 30(2): 50)
[20]
Liu H W, Sun Z H, Wang G K, et al.Effect of aging on microstructures and properties of Mo-alloyed Fe-36Ni invar alloy[J]. Mater. Sci. Eng., 2016, A654: 107
[21]
Guo X P, Kusabiraki K, Saji S.High-temperature scale formation of Fe-36% Ni bicrystals in air[J]. Oxid. Met., 2002, 58: 589
[22]
Yu Y C, Chen W Q, Zheng H G.High-temperature oxidation behavior and formation mechanism of rolling cracks of Fe-36Ni Invar alloy[J]. High Temp. Mater. Process., 2013, 32: 83
[23]
Yu Y C, Chen W Q, Zheng H G.Influence of heating conditions on the oxidation behavior of Fe-36Ni Invar alloy[J]. High Temp. Mater. Process., 2014, 33: 253
[24]
Yu Y C, Chen W Q, Zheng H G.Research on the hot ductility of Fe-36Ni Invar alloy[J]. Rare Met. Mater. Eng., 2014, 43: 2969
[25]
Li G H, Wang M J, Kang R K.Dynamic mechanical properties and constitutive model of Fe-36Ni invar alloy at high temperature and high strain rate[J]. Mater. Sci. Technol., 2010, 18: 824(李国和, 王敏杰, 康仁科. Fe-36Ni高温高应变率动态力学性能及其本构关系[J]. 材料科学与工艺, 2010, 18: 824)
[26]
Li G H, Cai Y J, Qi H J. Study on constitutive relationship of Fe-36Ni Invar alloy [J]. Adv. Mater. Res., 2011, 291-294: 1131