Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (8): 968-974    DOI: 10.11900/0412.1961.2017.00043
Orginal Article Current Issue | Archive | Adv Search |
Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy
Xifeng LI1, Nannan CHEN1, Jiaojiao LI1, Xueting HE2, Hongbing LIU2, Xingwei ZHENG2, Jun CHEN1()
1 National Engineering Research Center of Die and Mold CAD, Shanghai Jiao Tong University, Shanghai 200030, China
2 Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China
Cite this article: 

Xifeng LI, Nannan CHEN, Jiaojiao LI, Xueting HE, Hongbing LIU, Xingwei ZHENG, Jun CHEN. Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy. Acta Metall Sin, 2017, 53(8): 968-974.

Download:  HTML  PDF(1553KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since the thermal expansion coefficient of Invar 36 alloy is so low that it matches the composite materials well. It is very suitable as the material of composite material forming mould. Invar 36 alloy mould surface is usually produced by hot pressing technology. The hot pressing temperature and strain rate severely affect the quality of mould surface. In this work, the mechanical properties of Invar 36 alloy were studied in the temperature range from room temperature to 900 ℃ under different initial strain rates (8×10-5, 8×10-4 and 8×10-3 s-1) by using uniaxial tensile tests. The effect of temperature on the springback trend of thick Invar 36 alloy sheet by three-point bending tests at room temperature, 600 ℃ and 800 ℃ was investigated. The results indicate that the yield strength and ultimate tensile strength of Invar 36 alloy significantly decrease with increasing temperature. Meanwhile, the elongation firstly increases and then decreases with the increase of temperature. It reaches a peak value of 69.2% at 600 ℃ and increases by 55% than that at ambient temperature, which mainly results from the plasticity improvement by dynamic recrystallization. Invar 36 alloy at lower temperature (room temperature and 500 ℃) shows insensitive to the strain rate. Nevertheless, the strength and plasticity at 800 ℃ substantially decrease with decreasing strain rate. When the strain rate decreases from 8×10-3 s-1 to 8×10-5 s-1, the yield strength, ultimate tensile strength and elongation reduce by 38%, 47% and 50%, respectively. The three-point bending springback value decreases by 87.0% when the tested temperature increases from room temperature to 800 ℃.

Key words:  Invar 36 alloy      temperature      strain rate      mechanical property      springback     
Received:  13 February 2017     
ZTFLH:  TG142.76  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00043     OR     https://www.ams.org.cn/EN/Y2017/V53/I8/968

Fig.1  The die for three-point bending test
Fig.2  Macroscopic fractographies of the specimens stretched at different temperatures
Fig.3  Engineering stress-strain curves of Invar 36 alloy stretched at different temperatures
Temperature Yield strength Ultimate tensile Elongation
MPa strength %
MPa
Room temp. 292 447 44.7
210 185 352 45.7
500 113 267 49.5
600 81 203 69.2
700 71 138 59.1
800 56 88 38.5
900 34 51 38.0
Table 1  Mechanical properties of Invar 36 alloy tested at different temperatures (8×10-4 s-1)
Fig.4  OM images of Invar 36 alloy as-received (a) and after tension at room temperature (b), 210 ℃ (c), 500 ℃ (d), 600 ℃ (e), 700 ℃ (f), 800 ℃ (g) and 900 ℃ (h)
Fig.5  OM images of longitudinal section near high-temperature tensile fracture of Invar 36 alloy at 600 ℃ (a), 700 ℃ (b) and 800 ℃ (c)
Fig.6  Effects of strain rates on engineering stress-strain curves of Invar 36 alloy at room temperature (a), 500 ℃ (b) and 800 ℃ (c)
Temperature / ℃ αf / (o) αi / (o) Δα / (o) Ks / %
Room temperature 34.85 38.60 3.75 10.8
600 31.50 32.95 1.45 4.6
800 32.15 32.60 0.45 1.4
Table 2  Experimental data of three-point bending springback of thick Invar 36 alloy sheet at different temperatures
[1] Nan J M, Li G X, Xu K W.Yielding behavior of low expansion invar alloy at elevated temperature[J]. J. Mater. Process. Technol., 2001, 114: 36
[2] Wang J P.Process development for invar shadow mask[J]. Vac. Electron., 1999, (4): 54(王建平. 殷钢荫罩的加工工艺[J]. 真空电子技术, 1999, (4): 54)
[3] Shiga M.Invar alloys[J]. Curr. Opin. Solid State Mater. Sci., 1996, 1: 340
[4] Gibbons G, Wimpenny D.Mechanical and thermomechanical properties of metal spray invar for composite forming tooling[J]. J. Mater. Eng. Perform., 2000, 9: 630
[5] Ha T K, Min S H.Effect of C content on the microstructure and physical properties of Fe-36Ni Invar alloy[J]. Mater. Sci. Forum, 2015, 804: 293
[6] Zhao Y, Sato Y S, Kokawa H, et al.Microstructure and properties of friction stir welded high strength Fe-36 wt%Ni alloy[J]. Mater. Sci. Eng., 2011, A528: 7768
[7] DeBra D B. Vibration isolation of precision machine tools and instruments[J]. CIRP Ann. Manuf. Technol., 1992, 41: 711
[8] Wimpenny D I, Gibbons G J.Metal spray invar tooling for composites[J]. Aircr. Eng. Aerosp. Technol., 2000, 72: 430
[9] Schell W R. Invar tooling for composites, tooling for composites [R]. Long Beach, CA: Society of Manufacturing Engineers, 1989, TE89/503: 1
[10] Durham S, Duquenne C.New developments in the manufacture of invar tooling for composite components [A]. Proceedings of the 71st Annual Forum[C]. Virginia Beach, Virginia: American Helicopter Society International, Inc., 2015: 1803
[11] Xiong W, Zhang H, Vitos L, et al.Magnetic phase diagram of the Fe-Ni system[J]. Acta Mater., 2011, 59: 521
[12] Zhang J M.Welding process optimization for Invar steel mold used in civil aircraft composite structures [D]. Harbin: Harbin Institute of Technology, 2013(张家铭. 民机复材结构用Invar钢模具焊接工艺优化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013)
[13] Waeckerlé T.Low nickel content FCC alloys: Recent evolution and applications[J]. IEEE Trans. Magn., 2010, 46: 326
[14] Yang B, Li H, Cao Z H.Application of Invar in mould for composites[J]. Fiber Reinf. Plast./Compos., 2010, (6): 68(杨博, 李宏, 曹正华. 殷钢在复合材料成形模具中的应用[J]. 玻璃钢/复合材料, 2010, (6): 68)
[15] Vinogradov A, Hashimoto S, Kopylov V I.Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni Invar alloy[J]. Mater. Sci. Eng., 2003, A355: 277
[16] Huang G H, Zhang D M, Yan D X, et al.Manufacturing technology research on Invar steel mould[J]. Adv. Aeron. Sci. Eng., 2011, 2: 485(黄钢华, 张冬梅, 晏冬秀等. Invar钢模具制造工艺研究[J]. 航空工程进展, 2011, 2: 485)
[17] Michler T.Influence of gaseous hydrogen on the tensile properties of Fe-36Ni INVAR alloy[J]. Int. J. Hydrogen Energy, 2014, 39: 11807
[18] Nan J M, Li G X, Xu K W, et al.Elevated temperature deformation behaviour and mechanical characteristics of Invar alloy used for shadow mask[J]. J. Mater. Eng., 2001, 1(1): 19(南俊马, 李光新, 徐可为等. 显示器荫罩用因瓦合金的高温变形行为与力学特性[J]. 材料工程, 2001, 1(1): 19)
[19] Yuan J P, Yi D Q, Yu Z M, et al.Influence of the deformation and heat treatment on the microstructures and properties of Invar alloy[J]. Heat Treat. Met., 2005, 30(2): 50(袁均平, 易丹青, 余志明等. 变形与热处理对Invar合金组织及性能的影响[J]. 金属热处理, 2005, 30(2): 50)
[20] Liu H W, Sun Z H, Wang G K, et al.Effect of aging on microstructures and properties of Mo-alloyed Fe-36Ni invar alloy[J]. Mater. Sci. Eng., 2016, A654: 107
[21] Guo X P, Kusabiraki K, Saji S.High-temperature scale formation of Fe-36% Ni bicrystals in air[J]. Oxid. Met., 2002, 58: 589
[22] Yu Y C, Chen W Q, Zheng H G.High-temperature oxidation behavior and formation mechanism of rolling cracks of Fe-36Ni Invar alloy[J]. High Temp. Mater. Process., 2013, 32: 83
[23] Yu Y C, Chen W Q, Zheng H G.Influence of heating conditions on the oxidation behavior of Fe-36Ni Invar alloy[J]. High Temp. Mater. Process., 2014, 33: 253
[24] Yu Y C, Chen W Q, Zheng H G.Research on the hot ductility of Fe-36Ni Invar alloy[J]. Rare Met. Mater. Eng., 2014, 43: 2969
[25] Li G H, Wang M J, Kang R K.Dynamic mechanical properties and constitutive model of Fe-36Ni invar alloy at high temperature and high strain rate[J]. Mater. Sci. Technol., 2010, 18: 824(李国和, 王敏杰, 康仁科. Fe-36Ni高温高应变率动态力学性能及其本构关系[J]. 材料科学与工艺, 2010, 18: 824)
[26] Li G H, Cai Y J, Qi H J. Study on constitutive relationship of Fe-36Ni Invar alloy [J]. Adv. Mater. Res., 2011, 291-294: 1131
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
No Suggested Reading articles found!