Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (6): 669-676    DOI: 10.11900/0412.1961.2016.00406
Orginal Article Current Issue | Archive | Adv Search |
Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo
Zhiqiang SHU1(),Pengbin YUAN2,Zhiying OUYANG1,Danmei GONG1,Xueming BAI1
1 Shanghai Hailong Oil Tubular Goods Research Institute, Shanghai 200949, China
2 Hilong Group of Companies Ltd., Shanghai 200949, China
Cite this article: 

Zhiqiang SHU,Pengbin YUAN,Zhiying OUYANG,Danmei GONG,Xueming BAI. Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo. Acta Metall Sin, 2017, 53(6): 669-676.

Download:  HTML  PDF(6909KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of tempering temperature on microstructure and mechanical properties of steel 26CrMo were studied based on mechanical property tests and microstructure observation. The results show that a phase matrix gradually occurs recovery and recrystallization with increasing temperature during 540~690 ℃ temper process, martensite morphology fades away gradually, flake or rocklike carbides separate out along the martensite boundaries, and then change into granulated dispersed distribution, at 690 ℃ tempering carbides happen aggregation and growth on grain boundaries. With tempering temperature increasing, the strength of 26CrMo steel is gradually reducing, plasticity and toughness are gradually increasing. The tensile property and impact energy can meet all different grade drill pipe requirements in API 5DP standard with different tempering conditions. The total impact energy, crack initiation energy and crack propagation energy of 26CrMo steel are gradually increasing with the tempering temperature rising, the crack propagation energy is three times of crack initiation energy which shows great anti-crack propagation capability, but their ratio has no obvious change. The change of impact pro-perty is closely related to the strength and plasticity change, impact toughness stand or fall depends on high or low plasticity.

Key words:  drill pipe steel 26CrMo      tempering temperature      microstructure      strength and plasticity properties      impact toughness     
Received:  09 September 2016     
Fund: Supported by Special Fund of Science and Technology Innovation of Baoshan District of Shanghai (No.13-B-3)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00406     OR     https://www.ams.org.cn/EN/Y2017/V53/I6/669

Fig.1  OM image of quenched 26CrMo steel
Fig.2  OM image of 26CrMo steel tempered at 540 ℃
Fig.3  Effects of tempering temperature on tensile strength Rm, yield strength Rp and elongation A of 26CrMo steel
Fig.4  Effects of tempering temperature on strain hardening exponent n and uniform deformation capacity Up of 26CrMo steel
Fig.5  Effect of tempering temperature on yield ratio of 26CrMo steel
Fig.6  Impact force and deflection curves of 26CrMo steel tempered at different temperatures after instrumented Charpy impact test at room temperature (Fm—maximum impact force, Sm—displacement of maximum impact force, St—total impact displacement)
Fig.7  Effects of tempering temperature on total impact energy Wt , crack initiation energy Wi and crack propagation energy Wp of 26CrMo steel
Fig.8  Low (a, c, e, g, i) and high (b, d, f, h, j) magnified SEM fractographs of 26CrMo steel tempered at 540 ℃ (a, b), 595 ℃ (c, d), 620 ℃ (e, f), 655 ℃ (g, h) and 690 ℃ (i, j) after impact test at room temperature
Fig.9  SEM images of 26CrMo steel tempered at 540 ℃ (a), 595 ℃ (b), 620 ℃ (c), 655 ℃ (d) and 690 ℃ (e)
Fig.10  Effects of tempering temperature on Rm and Fm of 26CrMo steel
Fig.11  Effects of tempering temperature on n and Sm of 26CrMo steel
[1] Liu X S.Drilling Technology Principle [M]. Beijing: Petroleum Industry Press, 1988: 95
[1] (刘希圣. 钻井工艺原理 [M]. 北京: 石油工业出版社, 1988: 95)
[2] Long Z H, Zhang J H.Drilling Engineering [M]. Beijing: China Petrochemical Press, 2010: 64
[2] (龙芝辉, 张锦宏. 钻井工程[M]. 北京: 中国石化出版社, 2010: 64)
[3] Gao L X, Zhang Y.String Design and Oil Tubular Goods Selection [M]. Beijing: Petroleum Industry Press, 2013: 97
[3] (高连新, 张毅. 管柱设计与油井管选材 [M]. 北京: 石油工业出版社, 2013: 97)
[4] Zhang Y, Zhao R C, Zhang R X.Comment on technical quality of high-strength drill pipes made at home and abroad[J]. Steel Pipe, 2000, 29(5): 1
[4] (张毅, 赵仁存, 张汝忻. 国内外高强度钻杆的技术质量评述 [J]. 钢管, 2000, 29(5): 1)
[5] Li J Q, Yu L S, Niu C J, et al.The production status and development trend of drill pipe[J]. Welded Pipe Tube, 2011, 34(11): 35
[5] (李建强, 于丽松, 牛成杰等. 石油钻杆的生产现状与发展趋势[J]. 焊管, 2011, 34(11): 35)
[6] Wang X H, Zhang G J, Li F P, et al.Chemical composition, heat treatment and mechanical properties of drill pipe steel[J]. Petrol. Tub. Goods Instrum., 2015, 1(2): 33
[6] (王新虎, 张冠军, 李方坡等. 钻杆钢的成分、热处理工艺及其力学性能[J]. 石油管材与仪器, 2015, 1(2): 33)
[7] Qian Q, Cao G Z, Liu C, et al.Influence by tempering temperature on performance of 26CrMo4s/2 drill pipe blank[J]. Steel Pipe, 2012, 41(5): 36
[7] (钱强, 曹贵贞, 刘聪等. 回火温度对26CrMo4s/2钢钻杆用管性能的影响[J]. 钢管, 2012, 41(5): 36)
[8] Cao J J, Chen M A.Research on heat treatment technology of 26CrMoNbTiB (S135) drill pipe[J]. Met. Mater. Metall. Eng., 2007, 35(2): 28
[8] (曹建军, 陈明安. 26CrMoNbTiB (S135)钻杆管热处理工艺的研究[J]. 金属材料与冶金工程, 2007, 35(2): 28)
[9] Zhang Z P, Zhang J S, Ning B Q.Effects of tempering temperature on microstructure and mechanical properties of 28CrMo47V steel[J]. Hot Work. Technol., 2012, 41(18): 184
[9] (张哲平, 张佳森, 宁保群. 回火温度对28CrMo47V钢组织和性能的影响[J]. 热加工工艺, 2012, 41(18): 184)
[10] He S L, Cai H P, Han L H.Study on heat treatment process improving strength and toughness of S135 drill pipe[J]. Steel Pipe, 2011, 40(suppl.): 7
[10] (何石磊, 蔡和平, 韩礼红. 提高S135钻杆强韧性的热处理工艺研究[J]. 钢管, 2011, 40(增刊): 7)
[11] Shaeri M H, Saghafian H, Shabestari S G.Effects of austempering and martempering processes on amount of retained austenite in Cr-Mo steels (FMU-226) used in mill liner[J]. J. Iron Steel Res. Int., 2010, 17: 53
[12] Huang B S, Jiang Z Y, Pan H H, et al.Influence of different heat treatment on corrosion resistance of G105 pipe[J]. J. Chin. Soc. Corros. Protect., 2012, 32: 67
[12] (黄本生, 江仲英, 潘欢欢等. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32: 67)
[13] Ouyang Z Y, Shu Z Q, Yuan P B.Effect of yield ratio on the performance of high strength and high ductility drill pipe[J]. Phys. Test. Chem. Anal.(Phys. Test.), 2013, 49A: 17
[13] (欧阳志英, 舒志强, 袁鹏斌. 屈强比对高强度高塑性钻杆性能的影响[J]. 理化检验-物理分册, 2013, 49A: 17)
[14] Li Y H, Xin X X, Fan Y G.Discussion on the yield-tensile ratio parameters of high-strength pipe line steel[J]. China Petrol. Mach., 2006, 34(9): 105
[14] (李晓红, 辛希贤, 樊玉光. 高强度管线钢屈强比参数的一些探讨[J]. 石油机械, 2006, 34(9): 105)
[15] Gao H L.Analysis and commentary on yield ratio of pipeline steel[J]. Welded Pipe Tube, 2010, 33(6): 10
[15] (高惠临. 管线钢屈强比分析与评述[J]. 焊管, 2010, 33(6): 10)
[16] Tang Z T.Relationship between fracture and force-displacement curve of impact specimen[J]. Phys. Exam. Test., 2004, (4): 1
[16] (唐振廷. 冲击试样断口与力-位移曲线之间的关系[J]. 物理测试, 2004, (4): 1)
[17] Wang H, Han L H, Hu F, et al.Effect of tempering temperature on precipitate and mechanical properties of an anti-sulfur, drill pipe steel in H2S containing environments[J]. Trans. Mater. Heat Treat., 2012, 33(3): 88
[17] (王航, 韩礼红, 胡锋等. 回火温度对抗硫钻杆钢析出相形貌及力学性能的影响[J]. 材料热处理学报, 2012, 33(3): 88)
[18] Wu X L, Niu J, Dong J M.Effect of tempering temperature on microstructure and properties of 25Cr2Ni4MoV steel[J]. Hot Work. Technol., 2008, 37(20): 76
[18] (吴新丽, 牛靖, 董俊明. 回火温度对25Cr2Ni4MoV钢组织和性能的影响[J]. 热加工工艺, 2008, 37(20): 76)
[19] Hui W J, Dong H, Weng Y Q, et al.Effect of heat treatment para-meters on mechanical properties of high strength Cr-Mo-V steel[J]. Acta Metall. Sin., 2002, 38: 1009
[19] (惠卫军, 董瀚, 翁宇庆等. 回火温度对Cr-Mo-V系高强度钢力学性能的影响[J]. 金属学报, 2002, 38: 1009)
[20] Qin B, Wang Z Y, Sun Q S.Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel[J]. Mater. Charact., 2008, 59: 1096
[21] Wen T, Hu X F, Song Y Y, et al.Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50: 447
[21] (温涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50: 447)
[22] Cui Z Q, Qin Y C.Metallographic and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2007: 196
[22] (崔忠圻, 覃耀春. 金属学与热处理 [M]. 第2版. 北京: 机械工业出版社, 2007: 196)
[23] Cui Y X, Wang C L.Metal Fracture Analysis [M]. Harbin: Harbin Industrial University Press, 1998: 73
[23] (崔约贤, 王长利. 金属断口分析 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 73)
[24] Chen J D, Mo W L, Wang P, et al.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metall. Sin., 2012, 48: 1186
[24] (陈俊丹, 莫文林, 王培等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48: 1186)
[25] Yuan S P, Liu G, Wang R H, et al.Coupling effect of multiple precipitates on the ductile fracture of aged Al-Mg-Si alloys[J]. Scr. Mater., 2007, 57: 865
[26] Zhou H J, Tu M J, Deng Z J, et al.On the development of strength potentialities of metallic materials, the second part——Rational balance between strength and ductility or toughness[J]. J. Xi′an Jiaotong Univ., 1980, 14(1): 25
[26] (周惠久, 涂铭旌, 邓增杰等. 再论发挥金属材料强度潜力问题——强度、塑性、韧度的合理配合[J]. 西安交通大学学报, 1980, 14(1): 25)
[27] Shu D L.Mechanical Properties of Materials [M]. 2nd Ed., Beijing: China Machine Press, 2007: 15
[27] (束德林. 工程材料力学性能 [M]. 第2版. 北京: 机械工业出版社, 2007: 15)
[28] Zhou H J, Huang M Z.The Strength Theory of Metal Materials [M]. Beijing: Science Press, 1989: 215
[28] (周惠久, 黄明志. 金属材料强度学 [M]. 北京: 科学出版社, 1989: 215)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!