Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (6): 657-668    DOI: 10.11900/0412.1961.2016.00403
Orginal Article Current Issue | Archive | Adv Search |
Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe
Liming DONG1,2(),Li YANG1,Jun DAI1,Yu ZHANG2,Xuelin WANG3,Chengjia SHANG3
1 College of Automotive Engineering, Changshu Institute of Technology, Changshu 215500, China
2 Institute of Research of Iron and Steel, Sha-Steel, Zhangjiagang 215625, China
3 College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe. Acta Metall Sin, 2017, 53(6): 657-668.

Download:  HTML  PDF(15758KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To increase transport efficiency and to lower the costs of pipeline construction, longitudinally submerged arc welded (LSAW) pipes with larger diameters and thicker walls have been increasingly used by the pipeline industry. For example, in Russia, the LSAW pipeline in the Bovanenkovo-Ukhta project was recently constructed with K65 steel (the highest grade of the Russian natural gas pipeline), which is similar in specifications and yield strength requirement (550 MPa grade) to API X80 but has a stricter low temperature toughness value of 60 J at -40 ℃ (compared to -20 ℃ for API X80 grade) due to the extreme Arctic environment. Although weld metal with acicular ferrite (AF) has been developed to meet the requirement of low temperature toughness, the main objective of the present work was to clarify the microstructural evolution and the resulting changes in mechanical properties after the bending process. Hot bending pipes are necessary links in the construction of pipeline lying, which make more strin gent standards for the strength and low temperature toughness. That puts forward a challenge especially to the weld bead because of the deterioration of toughness during the hot bending process. In this work, submerged arc welding wire with high strength and toughness was developed for K65 hot bending pipes, and the alloying elements of Mn, Ni, Mo were considered to estimate the microstructure evolution and the effect of low temperature toughness for the weld metal. The results showed the low temperature toughness at -40 ℃ reached 90~185 J and 65~124 J for weld metal of straight seam pipe and hot bending pipe respectively, which reflect the excellent role of alloying elements of Mn, Ni, Mo. Microstructure characterization revealed that the weld metal, which originally consisted mainly of AF in the as-deposited condition, became predominantly composed of bainitic ferrite (BF) after hot bending. In addition, the large size cementite along the grain boundary was also the reason for the deterioration of toughness. It is found that reaustenisation caused a small austenite grain-sized matrix, which brought about a very high volume fraction of bainite. However, the low temperature toughness for hot bending pipe was improved to 124 J for the weld metal with 0.2%Mo, in which about 67.1% of high angle grain boundary were found. It is clear that the process of reaustenitisation during the bending process plays an important role in successful microstructural design for the steel weld metals.

Key words:  pipe line steel      submerged arc welding wire      hot bending process      weld metal      low temperature toughness      acicular ferrite     
Received:  08 September 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00403     OR     https://www.ams.org.cn/EN/Y2017/V53/I6/657

Fig.1  Schematic of the industrial hot pipe bending process
Fig.2  Schematic of thermal simulation including bending and tempering for samples (WM-Q means the quenching process of the weld; WM-QT means the quenching and tempering process of the weld)
Steel Rp0.5 Rm Z Impact energy / J
MPa MPa % T BM WM
Single Average Single Average
K65 555~665 ≥640 ≥18 -40 ≥150 ≥200 ≥42 ≥ 56
X80 555~690 ≥625 - -10 ≥140 ≥180 ≥80 ≥ 90
Table 1  Mechanical properties of K65 and X80 pipeline steels[14]
Bead Wire-1 Wire-2 Wire-3 Wire-4 Welding Heat input
Current Voltage Current Voltage Current Voltage Current Voltage speed (η=0.9)
A V A V A V A V cmmin-1 kJcm-1
Inside 950 33 850 36 750 40 600 42 110 57.5
Outside 1200 33 900 36 800 40 650 40 120 58.5
Table 2  Submerged arc welding parameters
Fig.3  Macrograph of the weld joints and schematic of the positions for tests
Fig.4  OM image of K65 base metal
No. C Si Mn Ni Mo P S Others Fe
1# 0.063 0.21 1.60 1.19 0.132 0.010 0.0046 0.305 Bal.
2# 0.063 0.21 1.60 1.39 0.127 0.011 0.0050 0.307 Bal.
3# 0.067 0.22 1.81 1.13 0.256 0.011 0.0054 0.301 Bal.
4# 0.068 0.23 1.99 1.17 0.191 0.011 0.0057 0.313 Bal.
Table 3  Chemical compositions of the weld metals(mass fraction / %)
No. Rp0.5 Rm Z Hardness / HV10
WM WM-QT
MPa MPa %
1# 583 723 21.8 231 230
2# 606 722 23.5 238 240
3# 647 714 22.0 244 253
4# 689 768 21.7 250 259
Table 4  Tensile properties of the weld metal and hardnesses at different conditions
Fig.5  Impact energies of WM and WM-QT at -40 ℃
Fig.6  OM images of 2# and 3# weld metals at different conditions (AF—acicular ferrite, BF—upper bainite ferrite, GBF—grain boundary ferrite, FSP—ferrite side-plate) (a) 2# WM (b) 3# WM (c) 2# WM-QT (d) 3# WM-QT
Fig.7  OM images of 3# weld metal for quenching (Q) condition and hot bending pipe (HBP)(a) 3# WM-Q (b) 3# WM-HBP
Fig.8  OM images of austenite grain boundaries in 3# weld metal(a) 3# WM(b) 3# WM-QT(c) 3# WM-HBP
Fig.9  OM images of martensite/austenite (M/A) in 3# weld metals(a) 3# WM (b) 3# WM-Q (c) 3# WM-QT (d) 3# WM-HBP
Fig.10  Volume fractions of M/A islands and their average sizes in samples of Fig.9
Fig.11  TEM images of 3# weld metal at quenching and tempering conditions(a) 3# WM (b) 3# WM-Q (c~e) 3# WM-QT
Fig.12  EBSD characterizations of 3# weld metal
(a) Euler map of 3# WM (b) Euler map of 3# WM-QT (c) distribution of boundary misorientation (d) distribution of effective grain size
Fig.13  Impact fracture SEM images of 3# weld metal at -40 ℃(a) 3# WM (b) EDS of the inclusion in Fig.13a (c) 3# WM-QT (d) 3# WM-HBP
Fig.14  OM images of the crack propagation(a) 3# WM (b) local enlarged image of the crack in Fig.14a(c) 3# WM-QT (d) local enlarged image of the crack in Fig.14c
Fig.15  Schematics indicating cleavage crack propagation and deflection(a) AF (b) AF+BF (c) BF
[1] Gao H L.The challenges for pipeline projects & development trend of pipeline steel[J]. Weld. Pipe Tube, 2010, 33(10): 5
[1] (高惠临. 管道工程面临的挑战与管线钢的发展趋势[J]. 焊管, 2010, 33(10): 5)
[2] Stalheim D G.The use of high temperature processing (HTP) for high strength oil and gas transmission pipeline application [A]. Proceedings of the 5th steels Conference[C]. Iron Steel, 2005, 40: 699
[3] Niu J, Liu Y L, Feng Y R, et al.Low temperature embrittlement of X80 steel weld after heat treatment[J]. Hot Work. Technol., 2010, 39(19): 15
[3] (牛靖, 刘迎来, 冯耀荣等. 热处理状态下X80钢焊缝的低温脆化[J]. 热加工工艺, 2010, 39(19): 15)
[4] Keehan E, Karlsson L, Andren H O, et al. New developments with C-Mn-Ni high-strength steel weld metals, Part A——Microstructure [J]. Weld. J., 2006,85: 200.s
[5] Keehan E, Karlsson L, Andrén H O.Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 1——Effect of nickel content[J]. Sci. Technol. Weld. Join., 2006, 11: 1
[6] Keehan E, Karlsson L, Andrén H O, et al.Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 2——Impact toughness gain resulting from manganese reductions[J]. Sci. Technol. Weld. Join., 2006, 11: 9
[7] Bhole S D, Nemade J B, Collins L, et al.Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel[J]. J. Mater. Process. Technol., 2006, 173: 92
[8] Zhang M, Yao C W, Fu C, et al.Submerged arc welding wire matched with X80 pipeline steel[J]. Trans. China Weld. Inst., 2006, 27(4): 64
[8] (张敏, 姚成武, 付翀等. X80管线钢埋弧焊匹配焊丝研制[J]. 焊接学报, 2006, 27(4): 64)
[9] Pan X, Wang Y B, Zhang Y.Development of submerged arc welding wire for third generation pipeline X90 [A]. The National Metal Products Information Network Twenty-Third Annual Meeting and the 2013 Metal Products Industry Information Technology Symposium[C]. Wuxi: The Chinese Society for Metals, 2013
[9] (潘鑫, 王银柏, 张宇. 第三代管线X90用埋弧焊丝研制 [A]. 全国金属制品信息网第23届年会暨2013金属制品行业技术信息交流会论文集[C]. 无锡: 中国金属学会, 2013)
[10] Bi Z Y, Liu H Z, Jing X T, et al.Research on submerged arc welding wire for X100 pipeline steel[J]. China Weld., 2011, 20(2): 56
[11] Zhang X L, Liu Y L, Feng Y R, et al.Relationship of microstructure and toughness index of reheated high grade pipeline steels[J]. Dev. Appl. Mater., 2008, 23(1): 1
[12] Arai Y, Kondo K, Hirata H, et al.Metallurgical design of newly developed material for seamless pipes of X80-X100 grades [A]. ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering Volume 4: Materials Technology; Ocean Engineering[C]. San Diego, California, USA: ASME, 2007, 37
[13] Wu D Y, Han X L, Tian H T, et al.Microstructural characterization and mechanical properties analysis of weld metals with two Ni contents during post-weld heat treatments[J]. Metall. Mater. Trans., 2015, 46A: 1973
[14] Yang W W, Zhao J, Jiao B, et al.Analysis and comparison of the K65 steel grade standards[J]. Weld. Pipe Tube, 2013, 36(7): 67
[14] (杨玮玮, 赵晶, 焦斌等. K65钢级标准的分析和对比[J]. 焊管, 2013, 36(7): 67)
[15] Qian B N, Guo X M, Li J L, et al.Welding text of X80 high strength pipeline steel[J]. Weld. Join., 2002, (8): 14
[15] (钱百年, 国旭明, 李晶丽等. 高强度管线钢X80的焊接研究[J]. 焊接, 2002, (8): 14)
[16] Wang X L, Dong L M, Yang W W, et al.Effect of Mn, Ni, Mo proportion on micro-structure and mechanical properties of weld metal of K65 pipeline steel[J]. Acta Metall. Sin., 2016, 52: 649
[16] (王学林, 董利明, 杨玮玮等. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响[J]. 金属学报, 2016, 52: 649)
[17] Abson D J, Pargeter R J.Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C-Mn steel fabrications[J]. Int. Met. Rev., 1986, 31: 141
[18] Babu S S.The mechanism of acicular ferrite in weld deposits[J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 267
[19] Li Y, Baker T N.Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels[J]. Mater. Sci. Technol., 2010, 26: 1029
[20] Thomas G.Retained austenite and tempered martensite embrittlement[J]. Metall. Mater. Trans., 1978, 9A: 439
[21] Hwang B, Kin Y G, Lee S, et al.Effective grain size and charpy impact properties of high-toughness X70 pipeline steels[J]. Metall. Mater. Trans., 2005, 36A: 2107
[22] Padap A K, Chaudhari G P, Pancholi V, et al.Microstructural evolution and mechanical behavior of warm multi-axially forged HSLA steel[J]. J. Mater. Sci., 2012, 47: 7894
[23] Yan W, Zhu L, Sha W, et al.Change of tensile behavior of a high-strength low-alloy steel with tempering temperature[J]. Mater. Sci. Eng., 2009, A517: 369
[24] Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite——A novel steel heat treatment [J]. Mater. Sci. Eng., 2006, A438-440: 25
[25] Yang J R, Yang C C, Huang C Y.The coexistence of acicular fe-rrite and bainite in an alloy-steel weld metal[J]. J. Mater. Sci. Lett., 1992, 11: 1547
[26] Yang J R, Huang C Y, Huang C F, et al.Influence of acicular fe-rrite and bainite microstructures on toughness for an ultra-low-carbon alloy steel weld metal[J]. J. Mater. Sci. Lett., 1993, 12: 1290
[1] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[2] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[3] Fengyu SONG,Yanmei LI,Ping WANG,Fuxian ZHU. EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD[J]. 金属学报, 2016, 52(7): 890-896.
[4] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[5] Changjun WANG,Jianxiong LIANG,Zhenbao LIU,Zhiyong YANG,Xinjun SUN,Qilong YONG. EFFECT OF METASTABLE AUSTENITE ON MECHANI-CAL PROPERTY AND MECHANISM IN CRYOGENICSTEEL APPLIED IN OCEANEERING[J]. 金属学报, 2016, 52(4): 385-393.
[6] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[7] MO Wenlin, ZHANG Xu, LU Shanping, LI Dianzhong, LI Yiyi. EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL[J]. 金属学报, 2015, 51(2): 230-238.
[8] GAO Guhui, GUI Xiaolu, AN Baifeng, TAN Zhunli, BAI Bingzhe, WENG Yuqing. EFFECT OF FINISH COOLING TEMPERATURE ON MICROSTRUCTURE AND LOW TEMPERATURE TOUGHNESS OF Mn-SERIES ULTRA-LOW CARBON HIGH STRENGTH LOW ALLOYED STEEL[J]. 金属学报, 2015, 51(1): 21-30.
[9] YANG Chenggong, SHAN Jiguo, REN Jialie. PHASE TRANSFORMATION TEMPERATURE CONTROL OF WELD METAL OF LASER WELDED TiNi SHAPE MEMORY ALLOY JOINT[J]. 金属学报, 2013, 49(2): 199-206.
[10] YANG Chenggong, SHAN Jiguo, REN Jialie. STUDY ON SHAPE RECOVERY TEMPERATURE OF TiNi ALLOY LASER WELD JOINT[J]. 金属学报, 2012, 48(5): 513-518.
[11] ZHANG Pengyan GAO Cairu ZHU Fuxian. MICROSMICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMULATE FUSION LINE IN EH40 SHIP PLATE STEEL FOR HIGH HEAT INPUT WELDING[J]. 金属学报, 2012, 48(3): 264-270.
[12] PENG Yun WANG Aihua XIAO Hongjun TIAN Zhiling. EFFECT OF Cu ON MICROSTRUCTURE FORMING AND REFINING OF WELD METAL IN 690 MPa GRADE HSLA STEEL[J]. 金属学报, 2012, 48(11): 1281-1289.
[13] HU Zhiyong YANG Chengwei JIANG Min YANG Guangwei WANG Wanjun WANG Xinhua . IN SITU OBSERVATION OF INTRAGRANULAR ACICULAR FERRITE NUCLEATED ON COMPLEX TITANIUM–CONTAINING INCLUSIONS IN TITANIUM DEOXIDIZED STEEL[J]. 金属学报, 2011, 47(8): 971-977.
[14] SHU Wei WANG Xuemin LI Shurui HE Xinlai. NUCLEATION AND GROWTH OF INTRAGRANULAR ACICULAR FERRITE AND ITS EFFECT ON GRAIN REFINEMENT OF THE HEAT-AFFECTED-ZONE[J]. 金属学报, 2011, 47(4): 435-441.
[15] LIU Dongsheng CHENG Binggui LUO Mi. MICROSTRUCTURE AND IMPACT FRACTURE BEHAVIOUR OF HAZ OF F460 HEAVY SHIP PLATE WITH HIGH STRENGTH AND TOUGHNESS[J]. 金属学报, 2011, 47(10): 1233-1240.
No Suggested Reading articles found!