Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1601-1609    DOI: 10.11900/0412.1961.2016.00078
Orginal Article Current Issue | Archive | Adv Search |
STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES
Kechang HAN1,Yiqi LIU1,Guoqiang LIN1(),Chuang DONG1,Kaiping TAI2,Xin JIANG2
1 Key Laboratory for Material Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
2 Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Kechang HAN,Yiqi LIU,Guoqiang LIN,Chuang DONG,Kaiping TAI,Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES. Acta Metall Sin, 2016, 52(12): 1601-1609.

Download:  HTML  PDF(1966KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Transition-metal nitrides have long attracted considerable attention among researchers and ubiquitous applications in various fields due to their renowned mechanical properties. However almost all the discussions of the strengthening mechanism were on conventional meso scale. For further understanding on the atomic scale strengthening mechanism of transition-metal nitrides, three groups of MNx (M=Ti, Zr, Hf) films with different nitrogen contents were synthesized on the Si substrates by magnetic filtering arc ion plating. The morphologies and thickness of the as-deposited films were characterized by FESEM, the microstructures and the residual stresses were characterized by XRD, the XPS and Nano Indenter were used to measure the chemical states and hardness (also the elastic modulus) of as-deposited films, respectively. The results show that all three groups MNx films perform the B1-NaCl single-phase structure within the large composition ranges. The preferred orientation, thickness, grain size and residual stress of the MNx films with different nitrogen contents were not changed so much. While the nanohardness and elastic modulus of MNx both first increased and then decreased with the rise of nitrogen content, and the peak values all existed when x near to 0.82. The strengthening mechanism was discussed and the decisive factor of composition dependent hardness enhancement was found from the atomic-scale chemical bonding states and electronic structure in this work, rather than the conventional meso-scale factors, such as preferred orientation, grain size and residual stress.

Key words:  transition-metal nitride film,      arc ion plating,      composition,      mechanical property,      strengthening mechanism     
Received:  09 March 2016     
Fund: Supported by National Natural Science Foundation of China (No.51271047)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00078     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1601

Fig.1  Schematic of enhanced magnetic filtering arc ion plating apparatus
Film Sample N2 flow rate / (Lmin-1)
TiNx T-1 0.03
T-2 0.06
T-3 0.09
T-4 0.12
T-5 0.18
T-6 0.24
T-7 0.27
T-8 0.30
ZrNx Z-1 0.06
Z-2 0.09
Z-3 0.12
Z-4 0.15
Z-5 0.18
Z-6 0.21
Z-7 0.24
Z-8 0.27
HfNx H-1 0.03
H-2 0.06
H-3 0.12
H-4 0.18
Table 1  N2 flow rates of MNx films deposited by arc ion plating
Fig.2  Representative surface (a, c, e) and cross-section (b, d, f) SEM images of TiNx (a, b), ZrNx (c, d) and HfNx (e, f)
Fig.3  XRD spectra of TiNx (a), ZrNx (b) and HfNx (c) films deposited at different N2 flow rates
Fig.4  Lattice parameters of MNx films deposited at different N2 flow rates
Fig.5  Grain sizes of MNx films deposited at different N2 flow rates
Fig.6  Typical XPS spectra of TiNx film
Fig.7  High resolution XPS spectra of the MNx films(a) Ti2p in TiNx film (b) N1s in TiNx film (c) Zr3d in ZrNx film(d) N1s in ZrNx film (e) Hf4f in HfNx film (f) N1s in HfNx film
Film Sample Atomic fraction / % x
Ti(Zr, Hf) N O
TiNx T-1 55.5 41.8 2.7 0.75
T-2 55.1 42.6 2.3 0.77
T-3 53.5 44.1 2.4 0.82
T-4 51.3 46.4 2.3 0.91
T-5 50.5 47.4 2.1 0.94
T-6 49.7 48.1 2.2 0.97
T-7 49.4 48.4 2.2 0.98
T-8 49.1 48.8 2.1 0.99
ZrNx Z-1 55.7 41.6 2.7 0.74
Z-2 55.2 42.2 2.6 0.76
Z-3 53.7 43.3 2.8 0.81
Z-4 53.2 44.4 2.4 0.84
Z-5 52.1 45.3 2.6 0.87
Z-6 51.4 45.7 2.9 0.89
Z-7 50.7 46.5 2.8 0.92
Z-8 49.8 47.3 2.9 0.95
HfNx H-1 58.4 39.1 2.5 0.67
H-2 54.8 42.5 2.7 0.78
H-3 53.7 43.9 2.4 0.82
H-4 52.0 46.0 2.0 0.89
Table 2  Compositions of the MNx films by XPS
Fig.8  Residual stress of the MNx films vs N content x
Fig.9  Hardness-displacement curve of T-3 sample
Fig.10  Hardness and elastic modulus of the TiNx (a), ZrNx (b) and HfNx (c) films vs x
[1] Toth L.Transition Metal Carbides and Nitrides. New York: Academic Press, 1971: 18
[2] Sundgren J E.Physics and Chemistry of Protective Coatings. New York: American Institute of Physics, 1986: 79
[3] Liu H X, Jiang Y H, Zhou R, Zhou R F, Jin Q L, Tang B Y.Acta Metall Sin, 2008; 44: 325
[3] (刘洪喜, 蒋业华, 周荣, 周荣锋, 金青林, 汤宝寅. 金属学报, 2008; 44: 325)
[4] Larijani M M, Tabrizi N, Norouzian S, Jafari A, Lahouti S, Haj Hosseini H, Afshari N.Vacuum, 2006; 81: 550
[5] Michael E O, Robert H P, Warren C O.Thin Solid Films, 1989; 181: 357
[6] Arnell R D, Colligon J S, Minnebaev K F, Yurasova V E.Vacuum, 1996; 47: 425
[7] Abdallah B, Naddaf M, A-Kharroub M.Nucl Inst Meth, 2013; 298B: 55
[8] Huang J, Ho C, Yu G.Mater Chem Phys, 2007; 102: 31
[9] Xu J H, Wang X, Ma S L, Liu Y, Xu K W.Chin J Mater Res, 2008; 22: 201
[9] (徐建华, 王昕, 马胜利, 刘阳, 徐可为. 材料研究学报, 2008; 22: 201)
[10] Jhi S, Ihm J, Louie S G, Cohen M L.Nature, 1999; 399: 132
[11] Shin C S, Gall D, Hellgren N, Patscheider J, Petrov I, Greene J E.J Appl Phys, 2003; 93: 6025
[12] Ma C H, Huang J H, Chen H.Thin Solid Films, 2002; 418: 73
[13] Huang M D, Lin G Q, Zhao Y H, Sun C, Wen L S, Dong C.Surf Coat Technol, 2003; 176: 109
[14] Lin G Q, Zhao Y H, Guo H M, Wang D Z, Dong C, Huang R, Wen L S.J Vac Sci Technol, 2004; 22A: 1218
[15] Schmid P E, Sato Sunaga M, Lévy F.J Vac Sci Technol, 1998; 16A: 2870
[16] Duan G F, Zhao G L, Wu L, Lin X X, Han G R.Appl Surf Sci, 2011; 257: 2428
[17] Tsetseris L, Kalfagiannis N, Logothetidis S, Pantelides S T.Phys Rev Lett, 2007; 99: 125503
[18] Mai Z H.X-Ray Characterization of Thin Film Structure. 2nd Ed., Beijing: Science Press, 2015: 80
[18] (麦振洪. 薄膜结构X射线表征.第2版, 北京: 科学出版社, 2015: 80)
[19] Whang K W, Seo Y W.J Vac Sci Technol, 1993; 11A: 1496
[20] Bertoti I, Mohai M, Sullivan J L, Saied S O.Appl Surf Sci, 1995; 84: 357
[21] Chan M H, Lu F H.Thin Solid Films, 2009; 517: 5006
[22] Jiang N, Zhang H J, Bao S N, Shen Y G, Zhou Z F.Physica, 2004; 352B: 118
[23] Ev I M, Strehbtow H H, Ek B N.Thin Solid Films, 1997; 303: 246
[24] Roman D, Bernardi J, Amorim C L G D, de Souza F S, Spinelli A, Giacomelli C, Figueroa C A, Baumvol I J R, Basso R L O.Mater Chem Phys, 2011; 130: 147
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!