Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (11): 1365-1376    DOI: 10.11900/0412.1961.2015.00020
Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION AND ORTHOGONAL ANALYSIS ON COUPLED ARC WITH MOLTEN POOL FOR KEYHOLING PLASMA ARC WELDING
Xuannan WU1,Yanhui FENG1,2(),Yan LI1,Yafei LI1,Xinxin ZHANG1,2,Chuansong WU3
1 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083
2 Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083
3 School of Materials Science and Engineering, Shangdong University, Jinan 250061
Cite this article: 

Xuannan WU,Yanhui FENG,Yan LI,Yafei LI,Xinxin ZHANG,Chuansong WU. NUMERICAL SIMULATION AND ORTHOGONAL ANALYSIS ON COUPLED ARC WITH MOLTEN POOL FOR KEYHOLING PLASMA ARC WELDING. Acta Metall Sin, 2015, 51(11): 1365-1376.

Download:  HTML  PDF(1322KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A 2D axial symmetrical mathematical model was developed for stationary keyholing plasma arc welding (PAW), to describe the transport process in coupled high-temperature flow arc and molten pool in the workpiece. The evolutions of electric, magnetic, velocity and temperature fields were simulated. The simulated fusion line of the weld bead is in quite good agreement with the experimental results, validating the mathematical model. It turns out that, both the current density and the temperature reach the maximum values near the tip of the tungsten cathode. The arc displays a typical bell-shape above the workpiece, but becomes slim cone-shape near the central axis as the arc enters the keyhole. The argon plasma slows down sharply when it strikes the inner wall of the keyhole, so high pressure appears in the keyhole and some argon plasma flows back. The combination of fluid flow and heat transfer contributes to the reversed bugle shaped fusion line. The simulation of orthogonal test was further conducted to study the effects of operational and structural parameters of the weld torch. The range analysis shows that the structural parameters of weld torch are more influential than the operational parameters. That is, more attention should be paid to control the gap between two electrodes, the electrode shrinkage and the nozzle diameter to guarantee the welding quality.

Key words:  plasma arc      welding      molten pool      coupling      orthogonal test     
Fund: Supported by National Natural Science Foundation of China (No.50936003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00020     OR     https://www.ams.org.cn/EN/Y2015/V51/I11/1365

Fig.1  Schematic of keyholing plasma arc welding (PAW) process
Fig.2  Geometric model of keyholing PAW (unit: mm, r—radial coordinate, z—axial coordinate)
Zone Source item Expression
Arc S r - p r - J z B θ
S z - p z + ρ g + J r B θ
S e J r 2 + J z 2 σ + 5 k B 2 e ( J r T r + J z T z ) - R
Molten pool S r - p r - μ l K v r
S z - p z + ρ g - μ l K v z
S e - ( ρ f l L a ) t - 1 r r ( r ρ v r f l L a ) - z ( ρ v z f l L a )
Table 1  Source items in momentum and energy equations
Fig.3  Temperature-dependent thermophyical properties of Ar plasma[34]

(a) density and dynamic viscosity

(b) specific heat

(c) thermal conductivity and electrical conductivity

Condition vr vz T φ A
Initial 0 0 300 K 0 0
Boundary
AB 0 0 3000 K -24 V A / n = 0
BC 0 0 3000 K φ / n = 0 A / n = 0
CD 0 0.758 m/s 300 K φ / n = 0 A / n = 0
DE 0 0 1000 K φ / n = 0 A / n = 0
EF 0 0 1000 K φ / n = 0 A / n = 0
FG 0 0 1000 K φ / n = 0 A / n = 0
GH 0 0.764 m/s 300 K φ / n = 0 A / n = 0
HI v r / n = 0 0 300 K φ / n = 0 A / n = 0
IJ 0 0 Eq.(17) 0 0
JK 0 0 Eq.(17) 0 0
KL 0 v z / n = 0 300 K φ / n = 0 0
LA v r / n = 0 v z / n = 0 T / n = 0 φ / n = 0 A / n = 0
Table 2  Initial and boundary conditions
Fig.4  Distributions of electrical potential and current density in arc column and workpiece at 2.0 s
Fig.5  Distribution of electromagnetic force in arc column at 2.0 s
Nomenclature Symbol Value
Solidus temperature Ts 1663 K
Liquidus temperature Tl 1723 K
Latent heat of fusion La 2.6×105 Jkg-1
Specific heat cp,metal 630 Jkg-1K-1
Density rmetal 7200 kgm-3
Elementary charge e 1.602×10-19 C
Boltzmann constant kB 1.381×10-23 JK-1
Magnetic permeability m0 4π×10-7 Hm-1
Radiation emissivity e 0.4
Welding current i 169 A
Arc voltage u 24 V
Working gas flow rate qw 3 Lmin-1
Shielding gas flow rate qs 30 Lmin-1
Gap between two electrodes ga 5 mm
Electrode shrinkage le 2 mm
Nozzle diameter dn 2.8 mm
Table 3  Thermophyical properties of stainless steel 304 and welding operational parameters[8]
Fig.6  Distributions of velocity and temperature in arc column and workpiece at 2.0 s (Tarc—temperature of arc, Twp—temperature of workpiece)

(a) whole calculation domain

(b) local region close to cathode

(c) distribution of velocity upon the top surface of workpiece

(d) distribution of velocity in the molten pool

Fig.7  Distributions of velocity streamline and pressure in arc column at 2.0 s (p—pressure)
Fig.8  Dynamic evolution of velocity and temperature fields in the arc column and workpiece (t—time)

(a) 0.2 s (b) 0.4 s (c) 0.6 s (d) 0.8 s (e) 1.0 s (f) 1.2 s (g) 1.4 s (h) 1.6 s (i) 1.8 s (j) 2.0 s

Fig.9  Comparison of weld bead cross-section between experimental image (left) and calculated result (right) (The workpiece is stainless steel 304 and its thickness is 6 mm; the welding current is 169 A; the arc voltage is 24 V; the working gas flow rate is 3 L/min; the shielding gas flow rate is 30 L/min; the gap between two electrodes is 5 mm; the electrode shrinkage is 2 mm; the nozzle diameter is 2.8 mm)
Level i / A qw / (Lmin-1) qs / (Lmin-1) ga / mm le / mm dn / mm rk / mm
1 169 3 20 5 2 2.8 2
2 159 1 10 3 0 1.8 1
3 179 5 30 7 4 3.8 3
Table 4  Table of factors and levels for orthogonal test simulation
Fig.10  Range analysis of top and bottom weld bead widths under different factors
[1] Li T Q, Wu C S, Feng Y H, Zheng L C. Int J Heat Fluid Flow, 2012; 34: 117
[2] The Teaching Research Group for Welding in Institute of Electrical Mechanical Shenyang. Plasma Arc and Welding. Beijing: Science Press, 1978: 1 (沈阳机电学院焊接教研组. 等离子弧与焊接. 北京: 科学出版社, 1978: 1)
[3] Wang X J, Wu C S, Chen M A. Acta Metall Sin, 2010; 46: 984 (王小杰, 武传松, 陈茂爱. 金属学报, 2010; 46: 984)
[4] Huo Y S, Wu C S, Chen M A. Acta Metall Sin, 2011; 47: 1 (霍玉双, 武传松, 陈茂爱. 金属学报, 2011; 47: 1)
[5] Tashiro S, Tanaka M, Nakatani M, Tani K, Furubayashi M. Surf Coat Technol, 2007; 201: 5431
[6] Aithal S M, Subramaniam V V, Pagan J, Richardson R W. J Appl Phys, 1998; 40: 3506
[7] Tashiro S, Tsujimura Y, Tanaka M. Trans JWRI, 2012; 41: 7
[8] Li Y, Feng Y H, Zhang X X, Wu C S. Int J Therm Sci, 2013; 64: 93
[9] Daha M A, Nassef G A, Abdallah I A. Int J Eng Sci Technol, 2012; 4: 506
[10] Zhao Y Z, Lei Y P, Shi Y W. Acta Metall Sin, 2004; 40: 1085 (赵玉珍, 雷永平, 史耀武. 金属学报, 2004; 40: 1085)
[11] Dong W C, Lu S P, Li D Z, Li Y Y. Acta Metall Sin, 2008; 44: 249 (董文超, 陆善平, 李殿中, 李依依. 金属学报, 2008; 44: 249)
[12] Wu C S, Wang H G, Zhang M X. Acta Metall Sin, 2006; 42: 311 (武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311)
[13] Zhang T, Wu C S, Chen M A. Acta Metall Sin, 2012; 48: 1025 (张 涛, 武传松, 陈茂爱. 金属学报, 2012; 48: 1025)
[14] Sun J H, Wu C S, Qin G L. Acta Metall Sin, 2011; 47: 1061 (孙俊华, 武传松, 秦国梁. 金属学报, 2011; 47: 1061)
[15] Li Y, Feng Y H, Zhang X X, Wu C S. Energy, 2014; 64: 1044
[16] Yamamoto K, Tanaka M, Tashiro S, Nakata K, Yamazaki K, Yamamoto E, Suzuki K, Murphy A B. Surf Coat Technol, 2008; 202: 5302
[17] Tashiro S, Miyata M, Tanaka M, Shin K, Takahashi K. Trans JWRI, 2010; 39: 27
[18] Tanaka M, Ushio M, John J L. Trans JWRI, 2003; 32: 259
[19] Nishiyama H, Sawada T, Tanaka H. ISIJ Int, 2006; 46: 705
[20] Bianchini R C, Favalli R C, Pimenta M M. J Phys, 2000; 33D: 134
[21] Liu Z M, Wu C S, Chen M A. Meas Sci Technol, 2012; 23: 1
[22] Liu Z M, Wu C S, Gao J Q. Int J Therm Sci, 2013; 63: 38
[23] Voler V R, Prakash C. Int J Heat Mass Trans, 1987; 30: 1709
[24] Bennon W D, Incropera F P. Int J Heat Mass Trans, 1987; 30: 2161
[25] Wang Y, Tsai H L. Int J Heat Mass Trans, 2001; 44: 2067
[26] Tanaka M, Ushio M, John J L. JSME Int J, 2005; 48: 397
[27] Du H Y. Master's Thesis, Lanzhou University of Technology, 2004 (杜华云. 兰州理工大学硕士学位论文, 2004)
[28] Wu C S. Welding Thermal Processes and Molten Pool Behaviors. Beijing: China Machine Press, 2007: 176 (武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 176)
[29] Li Y, Feng Y H, Zhang X X, Wu C S. Acta Metall Sin, 2013; 49: 804 (李 岩, 冯妍卉, 张欣欣, 武传松. 金属学报, 2013; 49: 804)
[30] Sahoo P, Debroy T, McNallan M. Metall Mater Trans, 1988; 19B: 483
[31] Choo R T C, Sezkely J, Westhoff R C. Metall Mater Trans, 1992; 23B: 357
[32] Boulos M I,Fauchais P,Pfender E. Thermal Plasmas II. New York: Plenum Press, 1994: 388
[33] Casado E, Colomer V. J Phys, 2000; 33D: 1342
[34] Chen X. Thermal Plasma Heat Transfer and Flow. Beijing: Science Press, 2009: 540 (陈 熙. 热等离子体传热与流动. 北京: 科学出版社, 2009: 540)
[35] Jian X X, Wu C S. Int J Heat Mass Trans, 2015; 84: 839
[1] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
[3] CHEN Huabin, CHEN Shanben. Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene[J]. 金属学报, 2022, 58(4): 541-550.
[4] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[5] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[6] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[7] WANG Cong, ZHANG Jin. Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview[J]. 金属学报, 2021, 57(9): 1126-1140.
[8] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[9] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[10] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[11] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[12] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[13] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] YU Lei, CAO Rui. Welding Crack of Ni-Based Alloys: A Review[J]. 金属学报, 2021, 57(1): 16-28.
[15] ZHANG Maolong, LU Yanhong, CHEN Shenghu, RONG Lijian, LU Hao. Effect of Dilution Ratio of the First 309L Cladding Layer on the Microstructure and Mechanical Properties of Weld Joint of Connecting Pipe-Nozzle to Safe-End in Nuclear Power Plant[J]. 金属学报, 2020, 56(8): 1057-1066.
No Suggested Reading articles found!