|
|
NUMERICAL SIMULATION AND ORTHOGONAL ANALYSIS ON COUPLED ARC WITH MOLTEN POOL FOR KEYHOLING PLASMA ARC WELDING |
Xuannan WU1,Yanhui FENG1,2( ),Yan LI1,Yafei LI1,Xinxin ZHANG1,2,Chuansong WU3 |
1 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 2 Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083 3 School of Materials Science and Engineering, Shangdong University, Jinan 250061 |
|
Cite this article:
Xuannan WU,Yanhui FENG,Yan LI,Yafei LI,Xinxin ZHANG,Chuansong WU. NUMERICAL SIMULATION AND ORTHOGONAL ANALYSIS ON COUPLED ARC WITH MOLTEN POOL FOR KEYHOLING PLASMA ARC WELDING. Acta Metall Sin, 2015, 51(11): 1365-1376.
|
Abstract A 2D axial symmetrical mathematical model was developed for stationary keyholing plasma arc welding (PAW), to describe the transport process in coupled high-temperature flow arc and molten pool in the workpiece. The evolutions of electric, magnetic, velocity and temperature fields were simulated. The simulated fusion line of the weld bead is in quite good agreement with the experimental results, validating the mathematical model. It turns out that, both the current density and the temperature reach the maximum values near the tip of the tungsten cathode. The arc displays a typical bell-shape above the workpiece, but becomes slim cone-shape near the central axis as the arc enters the keyhole. The argon plasma slows down sharply when it strikes the inner wall of the keyhole, so high pressure appears in the keyhole and some argon plasma flows back. The combination of fluid flow and heat transfer contributes to the reversed bugle shaped fusion line. The simulation of orthogonal test was further conducted to study the effects of operational and structural parameters of the weld torch. The range analysis shows that the structural parameters of weld torch are more influential than the operational parameters. That is, more attention should be paid to control the gap between two electrodes, the electrode shrinkage and the nozzle diameter to guarantee the welding quality.
|
|
Fund: Supported by National Natural Science Foundation of China (No.50936003) |
[1] | Li T Q, Wu C S, Feng Y H, Zheng L C. Int J Heat Fluid Flow, 2012; 34: 117 | [2] | The Teaching Research Group for Welding in Institute of Electrical Mechanical Shenyang. Plasma Arc and Welding. Beijing: Science Press, 1978: 1 (沈阳机电学院焊接教研组. 等离子弧与焊接. 北京: 科学出版社, 1978: 1) | [3] | Wang X J, Wu C S, Chen M A. Acta Metall Sin, 2010; 46: 984 (王小杰, 武传松, 陈茂爱. 金属学报, 2010; 46: 984) | [4] | Huo Y S, Wu C S, Chen M A. Acta Metall Sin, 2011; 47: 1 (霍玉双, 武传松, 陈茂爱. 金属学报, 2011; 47: 1) | [5] | Tashiro S, Tanaka M, Nakatani M, Tani K, Furubayashi M. Surf Coat Technol, 2007; 201: 5431 | [6] | Aithal S M, Subramaniam V V, Pagan J, Richardson R W. J Appl Phys, 1998; 40: 3506 | [7] | Tashiro S, Tsujimura Y, Tanaka M. Trans JWRI, 2012; 41: 7 | [8] | Li Y, Feng Y H, Zhang X X, Wu C S. Int J Therm Sci, 2013; 64: 93 | [9] | Daha M A, Nassef G A, Abdallah I A. Int J Eng Sci Technol, 2012; 4: 506 | [10] | Zhao Y Z, Lei Y P, Shi Y W. Acta Metall Sin, 2004; 40: 1085 (赵玉珍, 雷永平, 史耀武. 金属学报, 2004; 40: 1085) | [11] | Dong W C, Lu S P, Li D Z, Li Y Y. Acta Metall Sin, 2008; 44: 249 (董文超, 陆善平, 李殿中, 李依依. 金属学报, 2008; 44: 249) | [12] | Wu C S, Wang H G, Zhang M X. Acta Metall Sin, 2006; 42: 311 (武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311) | [13] | Zhang T, Wu C S, Chen M A. Acta Metall Sin, 2012; 48: 1025 (张 涛, 武传松, 陈茂爱. 金属学报, 2012; 48: 1025) | [14] | Sun J H, Wu C S, Qin G L. Acta Metall Sin, 2011; 47: 1061 (孙俊华, 武传松, 秦国梁. 金属学报, 2011; 47: 1061) | [15] | Li Y, Feng Y H, Zhang X X, Wu C S. Energy, 2014; 64: 1044 | [16] | Yamamoto K, Tanaka M, Tashiro S, Nakata K, Yamazaki K, Yamamoto E, Suzuki K, Murphy A B. Surf Coat Technol, 2008; 202: 5302 | [17] | Tashiro S, Miyata M, Tanaka M, Shin K, Takahashi K. Trans JWRI, 2010; 39: 27 | [18] | Tanaka M, Ushio M, John J L. Trans JWRI, 2003; 32: 259 | [19] | Nishiyama H, Sawada T, Tanaka H. ISIJ Int, 2006; 46: 705 | [20] | Bianchini R C, Favalli R C, Pimenta M M. J Phys, 2000; 33D: 134 | [21] | Liu Z M, Wu C S, Chen M A. Meas Sci Technol, 2012; 23: 1 | [22] | Liu Z M, Wu C S, Gao J Q. Int J Therm Sci, 2013; 63: 38 | [23] | Voler V R, Prakash C. Int J Heat Mass Trans, 1987; 30: 1709 | [24] | Bennon W D, Incropera F P. Int J Heat Mass Trans, 1987; 30: 2161 | [25] | Wang Y, Tsai H L. Int J Heat Mass Trans, 2001; 44: 2067 | [26] | Tanaka M, Ushio M, John J L. JSME Int J, 2005; 48: 397 | [27] | Du H Y. Master's Thesis, Lanzhou University of Technology, 2004 (杜华云. 兰州理工大学硕士学位论文, 2004) | [28] | Wu C S. Welding Thermal Processes and Molten Pool Behaviors. Beijing: China Machine Press, 2007: 176 (武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 176) | [29] | Li Y, Feng Y H, Zhang X X, Wu C S. Acta Metall Sin, 2013; 49: 804 (李 岩, 冯妍卉, 张欣欣, 武传松. 金属学报, 2013; 49: 804) | [30] | Sahoo P, Debroy T, McNallan M. Metall Mater Trans, 1988; 19B: 483 | [31] | Choo R T C, Sezkely J, Westhoff R C. Metall Mater Trans, 1992; 23B: 357 | [32] | Boulos M I,Fauchais P,Pfender E. Thermal Plasmas II. New York: Plenum Press, 1994: 388 | [33] | Casado E, Colomer V. J Phys, 2000; 33D: 1342 | [34] | Chen X. Thermal Plasma Heat Transfer and Flow. Beijing: Science Press, 2009: 540 (陈 熙. 热等离子体传热与流动. 北京: 科学出版社, 2009: 540) | [35] | Jian X X, Wu C S. Int J Heat Mass Trans, 2015; 84: 839 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|