Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (11): 1356-1364    DOI: 10.11900/0412.1961.2015.00176
Current Issue | Archive | Adv Search |
A NOVEL MODEL BASED ON VISCOELASTIC THEO- RY TO PREDICT THE TIME-DEPENDENT SPRINGBACK FOR DP600 STEEL SHEET
Shuai SUN,Daxin E()
School of Materials, Beijing Institute of Technology, Beijing 100081
Cite this article: 

Shuai SUN,Daxin E. A NOVEL MODEL BASED ON VISCOELASTIC THEO- RY TO PREDICT THE TIME-DEPENDENT SPRINGBACK FOR DP600 STEEL SHEET. Acta Metall Sin, 2015, 51(11): 1356-1364.

Download:  HTML  PDF(880KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

DP600 steel sheet with high strength has drawn much attention in the automotive industry, but the shape change following forming and unloading has not been known widely. The time-dependent springback of DP600 steel sheet was investigated under different pre-strains by uniaxial tension. According to the viscous behaviors under the elastic and plastic loading tests, the lower limit of integration in the constitutive equation of linear viscoelasticity was modified and the creep compliance was gained from the creep curve at a constant stress level of 309 MPa at room temperature. The predicted curve was acquired by using the superposition of the unloading impulse and the historical loading curve. The results reveal that the strain rates with high initial values gradually decreased following unloading at room temperature. As the pre-strain went up, both the absolute anelastic strain of time-dependent springback and the anelastic proportion of the total springback increased. Meanwhile, the direction of the time-dependent springback was same as that of the initial springback and opposite to the loading direction. In the same springback period, the ratio of the unloading stress to the creep springback strain tended to vary more linearly with the pre-strain than those obtained from immediate unloading. The simulated results using the revised model are in good agreement with the experimental data.

Key words:  DP600 steel sheet      time-dependent springback      creep springback      Kelvin model     
Fund: Supported by National Natural Science Foundation of China (No.51175044)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00176     OR     https://www.ams.org.cn/EN/Y2015/V51/I11/1356

Fig.1  Stress-strain curves in uniaxial tensile test for DP600 steel sheet
Fig.2  Eu varied with pre-strain εi under strain e=1.7×10-4
Specimen si / MPa Δeis Eu / GPa Δer Ei / GPa etol p / %
EI-0.06 116 -0.00060 193.3 - - -0.00060 -
PI-0.2 309 -0.00164 188.4 -0.00006 5150 -0.00170 3.53
PI-5 593 -0.00434 136.6 -0.00020 2965 -0.00454 4.41
PI-8 653 -0.00496 131.7 -0.00028 2340 -0.00524 5.32
PI-10 678 -0.00516 131.4 -0.00030 2260 -0.00546 5.49
PI-15 729 -0.00578 126.1 -0.00042 1735 -0.00620 6.77
Table1  Initial springback and time-dependent springback without holding time
Fig.3  Measured p as a function of ei
Fig.4  Measured time-dependent springback strain Δer varied with time
Fig.5  Creep curves of DP600 steel sheet under low (a) and high (b) stresses holding for 4 h
Fig.6  Creep springback strain of DP600 steel sheet (a) and loss percentage k for creep springback (b)
Fig.7  Fitting curve of creep compliance for DP600 (a) and detail view of marked area in Fig.7a (b)
Specimen sic / MPa Δeisc Euc / GPa Δerc Eic / GPa etol v / %
PC-0.2 309 -0.00178 167.4 -0.00006 5150 -0.00184 3.26
PC-0.3 362 -0.00216 166.6 -0.00008 4525 -0.00224 3.57
PC-0.33 371 -0.00224 165.1 -0.00008 4637 -0.00232 3.44
PC-0.4 384 -0.00232 163.7 -0.00008 4800 -0.00240 3.33
PC-5 593 -0.00446 132.9 -0.00014 4235 -0.00460 3.04
PC-10 678 -0.00544 124.6 -0.00016 4237 -0.00529 2.83
PC-15 729 -0.00618 117.9 -0.00018 4050 -0.00636 2.83
Table 2  Initial springback for creep and creep springback after holding for 4 h
Fig.8  Stress rate-time curve (a) and stress-time curve (b) (tA is the starting point of stress rate function; tB, tC, tD and tE are the times of unloading for specimens PI-5, PI-8, PI-10 and PI-15)
Fig.9  Convolutions of historical loading effect under different pre-strains (a) and detail view of marked area in Fig.9a (b)
Fig.10  Elastic after effect strain curves (a) and time-dependent springback strain curves for prediction (b)
Fig.11  Experimental strain and predicted strain of time-dependent springback varied with pre-strain ei
[1] Wagoner R H, Lim H, Lee M G. Int J Plasticity, 2013; 45: 3
[2] Fei D Y, Hodgson P. Nucl Eng Des, 2006; 236: 1847
[3] Geng L M, Wagoner R H. Int J Mech Sci, 2002; 44: 123
[4] Li K P, Carden W P, Wagoner R H. Int J Mech Sci, 2002; 44: 103
[5] E D X, Liu Y F. Mater Des, 2010; 31: 3
[6] Cleveland R M, Ghosh A K. Int J Plasticity, 2002; 18: 769
[7] Correia J P M, Sim?es F, Gracio J J, Barlat F, Ahzi S. Mater Sci Eng, 2007; A456: 170
[8] Ryou H, Chung K. Compos Sci Technol, 2009; 69: 292
[9] Zener C. Elasticity and Anelasticity of Metals. Chicago: University of Chicago Press, 1948: 3
[10] Nowick A S,Berry B S. Anelastic Relaxation in Crystalline Solids. New York: Academic Press, 1972: 21
[11] Munitz A, Kaufman M J. J Mater Sci, 2013; 48: 5361
[12] Li B, McClelland Z, Horstemeyer S J, Aslam I, Wang P T, Horstemeyer M F. Mater Des, 2015; 66: 575
[13] Wang J F, Wagoner R H, Carden W D, Matlock D K, Barlat F. Int J Plasticity, 2004; 20: 12
[14] Lim H, Lee M G, Sung J H, Kim J H, Wagoner R H. Int J Plasticity, 2012; 29: 42
[15] Yang T Q,Luo W B,Xu P,Wei Y T,Gang Q G. Viscoelastic Theory and Application. Beijing: Science Press, 2004: 3 (杨挺青,罗文波,徐 平,危银涛,刚芹果. 黏弹性理论与应用. 北京: 科学出版社, 2004: 3)
[16] Zang S L, Lee M G, Kim J H. Int J Mech Sci, 2013; 77: 194
[17] Michael E, Kassner, Kamia S. J Mater Res Technol, 2014; 3: 280
[18] Nie D F, Zhao J, Zhang J S. Acta Metall Sin, 2011; 47: 179 (聂德福, 赵 杰, 张俊善. 金属学报, 2011; 47: 179)
[19] Shui L, Jin T, Tian S G, Hu Z Q. Acta Metall Sin, 2007; 43: 47 (水 丽, 金 涛, 田素贵, 胡壮麒. 金属学报, 2007; 43: 47)
[20] Nie D F, Zhao J. Acta Metall Sin, 2009; 45: 840 (聂德福, 赵 杰. 金属学报, 2009; 45: 840)
[21] Sorvari J, Malinen M. Int J Solids Struct, 2006; 44: 1291
[22] Sorvari J, Malinen M, Hamalainen J. Int J Non-Linear Mech, 2006; 41: 1050
[23] Findley W N, Lai J S, Onaran K. Creep and Relaxation of Nonlinear Viscoelastic Materials. New York: North-Holland Publishing Company, 1976: 50
[24] Park S W, Schapery R A. Int J Solids Struct, 1999; 36: 1653
[25] Schapery R A, Park S W. Int J Solids Struct, 1999; 36: 1677
[26] Sorvari J, Malinen M. Mech Time-Depend Mater, 2007; 11: 143
No related articles found!
No Suggested Reading articles found!