Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (9): 1126-1140    DOI: 10.11900/0412.1961.2021.00148
Overview Current Issue | Archive | Adv Search |
Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview
WANG Cong(), ZHANG Jin
School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

WANG Cong, ZHANG Jin. Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview. Acta Metall Sin, 2021, 57(9): 1126-1140.

Download:  HTML  PDF(3272KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Flux is an indispensable consumable for submerged arc welding. Owing to the occurrence of complex chemical reactions between flux (slag), weld pool, and arc plasma, flux plays an essential role in determining the final composition of weld metal. To ensure a sound weldment, understanding how submerged arc welded metal compositions are fine-tuned by flux optimization is necessary. Herein, recent progress regarding the control mechanisms of fluxes on submerged arc welded metal compositions is studied. Particularly, the element transfer behaviors of major elements, including oxygen, silicon, manganese, titanium, and carbon, are documented from thermodynamic perspectives. Salient element transfer features incurred by the application of high heat input welding are interpreted. Moreover, the capabilities and limitations of prevailing compositional prediction models are evaluated. Finally, fundamental challenges to be explored further are discussed.

Key words:  submerged arc welding      welding flux      composition prediction      high heat input welding     
Received:  08 April 2021     
ZTFLH:  TG445  
Fund: National Natural Science Foundation of China(U20A20277);Fundamental Research Funds for the Central Universities(N2025025);Xingliao Talents Program(XLYC1807024);Liaoning Key Industrial Program(2019JH1/10100014);Regional Innovation Joint Fund of Liaoning Province(2020-YKLH-39);Royal Academy of Engineering(TSPC1070);Open Foundation of State Key Laboratory of Metal Material for Marine Equipment and Application(SKLMEA-K201903)
About author:  WANG Cong, professor, Tel: 15702435155, E-mail: wangc@smm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00148     OR     https://www.ams.org.cn/EN/Y2021/V57/I9/1126

Fig.1  Schematics of the transverse section of a weld bead
Fig.2  Reaction zones contributing to weld metal compositions in submerged arc welding
Fig.3  Expected ranges of oxygen and nitrogen contents in weld metals subjected to various welding methods (SAW—submerged arc welding, GMAW-CO2—O2 shielded metal arc welding, GMAW-Ar—Ar shielded metal arc welding, GTAW—gas tungsten arc welding, SMAW—shielded metal arc welding, SSAW—self-shielded arc welding)
Fig.4  Quantified level of O transfer between flux and weld metal (WM) (ΔO) value as a function of SiO2 content in CaF2-SiO2 fluxes[35,61]
Fig.5  ΔO value as a function of MnO content in CaF2-SiO2-MnO fluxes[31,36]
Fig.6  ΔO value as a function of CaO content in CaF2-SiO2-CaO fluxes[38]
Fig.7  ΔO value as a function of oxide level in fluxes under the heat input of 60.00 kJ/cm[35,36,39]
Fig.8  Si transfer value (ΔSi) between flux and WM as a function of CaO content in flux and activity of SiO2 in CaF2-SiO2-CaO melts at 1550oC
Fig.9  FeO level in the slag as a function of oxygen content in the weld metal[35,36]
Fig.10  Change of FeO content between slag and flux (δFeO) as a function of FeO content in FeO-SiO2(40%)-MnO fluxes
Fig.11  Reaction interfaces associated with decarburization behaviors in SAW[37]
Fig.12  Predicted weld metal oxygen content as a function of flux basicity index (BI)[13]
Fig.13  Actual weld metal oxygen content as a function of MnO addition level in typical manganese-silicate type fluxes[31]
Fig.14  Predicted weld metal oxygen contents from flux basicity model (a) and gas-slag-metal equilibrium model(b) as a function of MnO addition level in fluxes
Fig.15  Predicted weld metal oxygen contents from slag-metal equilibrium modeland gas-slag-metal equilibrium model as a function of TiO2 addition level in fluxes[3,24]
Fig.16  Predicted weld metal silicon contents from slag-metal and gas-slag-metal equilibrium models as a function of TiO2 addition level in fluxes[3,24]
Fig.17  Predicted weld metal manganese contents from slag-metaland gas-slag-metal equilibrium models as a function of TiO2 addition level in fluxes[3,24]
Fig.18  Predicted weld metal titanium contents from slag-metaland gas-slag-metal equilibrium models as a function of TiO2 addition level in flux[3,24]
1 Kou S. Welding Metallurgy [M]. 2nd Ed., Hoboken, New Jersey: John Wiley & Sons, Inc., 2003: 22
2 Wu C X, Zhang J X, Zhu B K, et al. Development and application of high efficiency submerged arc welding technology [J]. Hot Work. Technol., 2009, 38(23): 173
武春学, 张俊旭, 朱丙坤等. 高效埋弧焊技术的发展及应用 [J]. 热加工工艺, 2009, 38(23): 173
3 Zhang J, Leng J, Wang C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel [J]. Metall. Mater. Trans., 2019, 50B: 2083
4 Qiu C L, Lan L Y, Zhao D W, et al. Microstructural evolution and toughness in the HAZ of submerged arc welded low welding crack susceptibility steel [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 49
5 Xu K, Fang T, Zhao L F, et al. Effect of trace element on microstructure and fracture toughness of weld metal [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 425
6 Olson D, Liu S, Frost R, et al. Nature and behavior of fluxes used for welding [M]. ASM Handbook, Materials Park, OH, 1993, 6: 55
7 Natalie C A, Olson D L, Blander M. Physical and chemical behavior of welding fluxes [J]. Annu. Rev. Mater. Sci., 1986, 16: 389
8 Cao J M, Tang B G, Wang S L, et al. A new fused flux for low hydrogen high toughness welds [J]. Trans. China Weld. Inst., 1989, 10(1): 1
曹进茂, 唐伯钢, 王世亮等. 熔炼型低氢高韧性焊剂的研究 [J]. 焊接学报, 1989, 10(1): 1
9 Bang K S, Park C, Jung H C, et al. Effects of flux composition on the element transfer and mechanical properties of weld metal in submerged arc welding [J]. Met. Mater. Int., 2009, 15: 471
10 Belton G R, Moore T J, Tankins E S. Slag-metal reactions in submerged arc welding [J]. Weld. J., 1963, 42: 289
11 Fox A, Eakes M, Franke G. The effect of small changes in flux basicity on the acicular ferrite content and mechanical properties of submerged arc weld metal of navy HY-100 steel [J]. Weld. J., 1996, 75: 330S
12 North T, Bell H, Nowicki A, et al. Slag/metal interaction, O and toughness in submerged arc welding [J]. Weld. J., 1978, 57: 63
13 Tuliani S, Boniszewski T, Eaton N. Notch toughness of commercial submerged arc weld metal [J]. Weld. Met. Fabr., 1969, 37: 327
14 Chen B L, Zhou Y H. Improvement of toughness and strength of high strength steel submerged arc weld metal [J]. Trans. China Weld. Inst., 1987, 8(7): 153
陈伯蠡, 周运鸿. 高强钢埋弧焊焊缝的强韧化研究 [J]. 焊接学报, 1987, 8(7): 153
15 Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
16 Zhang M, Jia F, Cheng K K, et al. Influence of quenching and tempering on microstructure and properties of welded joints of G520 martensitic steel [J]. Acta Metall. Sin., 2019, 55: 1379
张 敏, 贾 芳, 程康康等. 调质处理对G520钢焊接接头组织及性能的影响 [J]. 金属学报, 2019, 55: 1379
17 Tian Z L, Xu L H, Peng Y, et al. Formation mechanism of the precipitate-free zone in high strength aluminum alloy welds [J]. Acta Metall. Sin., 2008, 44: 91
田志凌, 许良红, 彭 云等. 高强铝合金焊接接头无析出物区的形成机理 [J]. 金属学报, 2008, 44: 91
18 Tabuchi M, Kondo M, Watanabe T, et al. Improvement of type IV cracking resistance of 9Cr heat resisting steel weldment by boron addition [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 17: 331
19 Guo M H, Shao D C, Dong Z G, et al. Welding between high manganese steel and high carbon steel [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 13: 112
20 Li X Q. Chemical reaction at slag/metal interface during quasi-steady welding based on non-equilibrium thermodynamics [D]. Tianjin: Tianjin University, 2007
李晓泉. 基于非平衡热力学的准稳态焊接钢-渣界面化学冶金行为 [D]. 天津: 天津大学, 2007
21 Olson D L, Dixon R, Liby A L. Welding: Theory and Practice [M]. Amsterdam: Elsevier, 1990: 117
22 Olson D, Edwards G, Liu S, et al. Non-equilibrium behaviour of weld metal in flux-related processes [J]. Weld. World, 1993, 31: 142
23 Erokhin A A, translated by Zhao Y N. Theory of Fusion Welding [M]. Beijing: China Machine Press, 1981: 171
Erokhin A A著, 赵裕民译. 熔焊原理 [M]. 北京: 机械工业出版社, 1981: 171
24 Zhang J, Coetsee T, Basu S, et al. Impact of gas formation on the transfer of Ti and O from TiO2-bearing basic-fluoride fluxes to submerged arc welded metals: A thermodynamic approach [J]. Calphad, 2020, 71: 102195
25 Chai C S, Eagar T W. Slag-metal equilibrium during submerged arc welding [J]. Metall. Trans., 1981, 12B: 539
26 Chai C S. Slag-metal reactions during flux shielded arc welding [D]. Cambridge: Massachusetts Institute of Technology, 1980
27 Christensen N, Chipman J. Slag-metal interaction in arc welding [J]. Weld. J., 1953, 15: 1
28 Mitra U, Eagar T W. Slag-metal reactions during welding: Part II. Theory [J]. Metall. Trans., 1991, 22B: 73
29 Mitra U, Eagar T W. Slag-metal reactions during welding: Part I. Evaluation and reassessment of existing theories [J]. Metall. Trans., 1991, 22B: 65
30 Mitra U, Eagar T. Slag-metal reactions during welding: Part III. Verification of the theory [J]. Metall. Trans., 1991, 22B: 83
31 Burck P A, Indacochea J E, Olson D L. Effects of welding flux additions on 4340 steel weld metal composition [J]. Weld. J., 1990, 3: 115s
32 Indacochea J E, Blander M, Christensen N, et al. Chemical reactions during submerged arc welding with FeO-MnO-SiO2 fluxes [J]. Metall. Trans., 1985, 16B: 237
33 Mitra U, Sutton R D, Eagar T W. Comparison of theoretically predicted and experimentally determined submerged arc weld deposit compositions [J]. Metall. Trans., 1983, 14B: 510
34 Eagar T W. Thermochemistry of joining [A]. Proc. Elliott Symp. Chem. Process Metall. [C]. Warrendale, PA: Iron and Steel Society,1991: 197
35 Zhang J, Coetsee T, Wang C. Element transfer behaviors of fused CaF2-SiO2 fluxes subject to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 16
36 Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-SiO2-MnO fluxes under high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 885
37 Zhang J, Coetsee T, Dong H B, et al. Elucidating the roles of SiO2 and MnO upon decarburization during submerged arc welding: A thermodynamic study into EH36 shipbuilding steel [J]. Metall. Mater. Trans., 2020, 51B: 1805
38 Zhang J, Coetsee T, Dong H B, et al. Fine-tuned element transfer strategies for ternary CaF2-SiO2-CaO fluxes in submerged arc welding: An environmentally friendly approach [J]. Metall. Mater. Trans., 2020, 51B: 1350
39 Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-TiO2 fluxes in EH36 shipbuilding steel during high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 1953
40 Bale C W, Bélisle E, Chartrand P, et al. Reprint of: FactSage thermochemical software and databases, 2010-2016 [J]. Calphad, 2016, 55: 1
41 Bale C W, Chartrand P, Degterov S A, et al. Factsage thermochemical software and databases [J]. Calphad, 2002, 26: 189
42 Zhang J, Wang C, Coetsee T. Assessment of weld metal compositional prediction models geared towards submerged arc welding: Case studies involving CaF2-SiO2-MnO and CaO-SiO2-MnO fluxes [J]. Metall. Mater. Trans., 2021, doi: 10.1007/s11663-021-02190-x.
43 Zhang J, Wang C, Coetsee T. Thermodynamic evaluation of element transfer behaviors for fused CaO-SiO2-MnO fluxes subjected to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2021, doi: 10.1007/s11663-021-02221-7
44 Jindal S, Chhibber R, Mehta N P. Prediction of element transfer due to flux and optimization of chemical composition and mechanical properties in high-strength low-alloy steel weld [J]. Proc. Inst. Mech. Eng., 2015, 229B: 785
45 Kanjilal P, Pal T, Majumdar S. Prediction of element transfer in submerged arc welding [J]. Weld. J., 2007, 10: 40
46 Mitra U, Eagar T W. Slag metal reactions during submerged arc welding of alloy steels [J]. Metall. Trans., 1984, 15A: 217
47 Wu X N, Feng Y H, Li Y, et al. Numerical simulation and orthogonal analysis on coupled arc with molten pool for keyholing plasma arc welding [J]. Acta Metall. Sin., 2015, 51: 1365
吴宣楠, 冯妍卉, 李 岩等. 穿孔等离子弧焊接弧与熔池的耦合模拟及正交分析 [J]. 金属学报, 2015, 51: 1365
48 Wu C S, Zhang M X, Li K H, et al. Study on the process mechanism of high-speed arc welding DE-GMAW [J]. Acta Metall. Sin., 2007, 43: 663
武传松, 张明贤, 李克海等. DE-GMAW高速电弧焊工艺机理的研究 [J]. 金属学报, 2007, 43: 663
49 Jian X X, Wu C S. Influence of Fe vapour on weld pool behavior of plasma arc welding [J]. Acta Metall. Sin., 2016, 52: 1467
菅晓霞, 武传松. Fe蒸气对等离子弧焊接熔池行为的影响 [J]. 金属学报, 2016, 52: 1467
50 Eagar T W. Sources of weld metal oxygen contamination during submerged arc welding [J]. Weld. J., 1978, 57: 76
51 Lau T, Weatherly G, Mclean A. The sources of oxygen and nitrogen contamination in submerged arc welding using CaO-Al2O3 based fluxes [J]. Weld. J., 1985, 64: 343
52 Polar A, Indacochea J, Blander M. Electrochemically generated oxygen contamination in submerged arc welding [J]. Weld. J., 1990, 69: 69
53 Li X Q, Liu P F, Wang G Y. Investigation on mechanism of oxygen gaining occurring in droplet reaction zone during SAW [J]. J. Aeronaut. Mater., 2006, 26(1): 63
李晓泉, 刘鹏飞, 王光耀. SAW焊接熔滴反应区增氧机制探讨 [J]. 航空材料学报, 2006, 26(1): 63
54 Mitra U. Kinetics of slag metal reactions during submerged arc welding of steel [D]. Cambridge: Massachusetts Institute of Technology, 1984
55 Li X Q, Yang X G, Fang C F. Thermodynamical analysis of active SiO2 in interfacial chemical reaction between slag and liquid metal based on thermal-dynamic coupling [J]. Trans. China Weld. Inst., 2005, 26(10): 43
李晓泉, 杨旭光, 方臣富. 活性SiO2在焊接熔渣-金属界面化学反应的热动力学分析 [J]. 焊接学报, 2005, 26(10): 43
56 Davis M L, Bailey N. Evidence from inclusion chemistry of element transfer during submerged arc welding [J]. Weld. J., 1991, 70: 57
57 Dowling J M, Corbett J M, Kerr H W. Inclusion phases and the nucleation of acicular ferrite in submerged arc welds in high strength low alloy steels [J]. Metall. Trans., 1986, 17A: 1611
58 Babu S S, David S A. Inclusion formation and microstructure evolution in low alloy steel welds [J]. ISIJ Int., 2002, 42: 1344
59 Rein R H. Proceedings, workshop on welding research opportunities held at office of naval research [R]. Arlington: Office of Naval Research, Arlington VA, 1974
60 Chai C, Eagar T. Slag metal reactions in binary CaF2-metal oxide welding fluxes [J]. Weld. J., 1982, 61: 229
61 Dallam C B, Liu S, Olson D L. Flux composition dependence of microstructure and toughness of submerged arc HSLA weldments [J]. Weld. J., 1985, 64: 140
62 Cruz-Crespo A, Quintana Puchol R, Perdomo González L, et al. Effect of CaO from the slag system MnO-SiO2-CaO on the chemical composition of weld metal [J]. Weld. Int., 2010, 24: 518
63 Polar A, Indacochea J, Blander M. Fundamentals of the chemical behavior of select welding fluxes [J]. Weld. J., 1991, 70: 15
64 Lau T, Weatherly G C, Mclean A. Gas/metal/slag reactions in submerged arc welding using CaO-Al2O3 based fluxes [J]. Weld. J., 1986, 65: 31
65 Block-Bolten A, Eagar T W. Metal vaporization from weld pools [J]. Metall. Trans., 1984, 15B: 461
66 Mills K. Slag Atlas [M]. 2nd Ed., Dusseldorf: Verlag Stahleisen GmbH, 1995: 186
67 Sommerville I D, Kay D A R. Activity determinations in the CaF2-CaO-SiO2 system at 1450oC [J]. Metall. Trans., 1971, 2: 1727
68 Kohno R, Takami T, Mori N, et al. New fluxes of improved weld metal toughness for HSLA steels [J]. Weld. J., 1982, 61: 373
69 Liao F C, Liu S. The effect of deoxidation sequence of carbon manganese steel weld metal microstructures [J]. Weld. J., 1990, 71: 94
70 Eriksson G, Pelton A D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO-TiO2, MgO-TiO2, FeO-TiO2, Ti2O3-TiO2, Na2O-TiO2, and K2O-TiO2 systems [J]. Metall. Trans., 1993, 24B: 795
71 Cancarevic M, Zinkevich M, Aldinger F. Thermodynamic description of the Ti-O system using the associate model for the liquid phase [J]. Calphad, 2007, 31: 330
72 Sengupta V, Havrylov D, Mendez P. Physical phenomena in the weld zone of submerged arc welding—A review [J]. Weld. J., 2019, 98: 283S
73 Singh B, Khan Z A, Siddiquee A N, et al. Effect of CaF2, FeMn and NiO additions on impact strength and hardness in submerged arc welding using developed agglomerated fluxes [J]. J. Alloys Compd., 2016, 667: 158
74 Singh B, Khan Z A, Siddiquee A N, et al. Experimental study on effect of flux composition on element transfer during submerged arc welding [J]. Sādhanā, 2018, 43: 26
75 Loder D, Michelic S K, Mayerhofer A, et al. On the capability of nonmetallic inclusions to act as nuclei for acicular ferrite in different steel grades [J]. Metall. Mater. Trans., 2017, 48B: 1992
76 Evans G. The effect of carbon on the microstructure and properties of C-Mn all-weld metal deposits [J]. Weld. J., 1983, 62: 313
77 Farrar R A, Harrison P L. Acicular ferrite in carbon-manganese weld metals: An overview [J]. J. Mater. Sci., 1987, 22: 3812
78 Ferrante M, Farrar R A. The role of oxygen rich inclusions in determining the microstructure of weld metal deposits [J]. J. Mater. Sci., 1982, 17: 3293
79 Ito J, Nakanishi M. Study on charpy impact properties of weld metal with submerged arc welding [J]. Sumit. Search, 1976, 15: 42
80 Jindal S, Chhibber R, Mehta N P. Effect of flux constituents and basicity index on mechanical properties and microstructural evolution of submerged arc welded high strength low alloy steel [J]. Mater. Sci. Forum, 2013, 738-739: 242
81 Evans G. Effect of manganese on the microstructure and properties of all-weld-metal deposits [J]. Weld. J., 1980, 59: 68
82 Harrison P, Farrar R. Microstructural development and toughness of C-Mn and C-Mn-Ni weld metals. Part 1. Microstructural development [J]. Met. Constr., 1987, 34: 15
83 Chai C S, Eagar T W. Prediction of weld-metal composition during flux-shielded welding [J]. J. Mater. Energy Syst., 1983, 5: 160
84 Coetsee T. Phase chemistry of submerged arc welding (SAW) fluoride based slags [J]. J. Mater. Res. Technol., 2020, 9: 9766
85 Devletian J, Chen J, Wood W, et al. Fundamental Aspects of Electroslag Welding of Titanium Alloys [M]. Materials Park, OH: ASM International, 1990, 6: 419
86 Sikorski A K. Effects of the chemical composition of the gas shield on the properties of flux-cored wire welds [J]. Weld. Int., 1993, 7: 683
[1] Zongyuan ZOU, Xiaokui XU, Yinxiao LI, Chao WANG. Study on the Method of Improving the Toughness of CGHAZ for High Heat Input Welding Steels[J]. 金属学报, 2017, 53(8): 957-967.
[2] Liming DONG,Li YANG,Jun DAI,Yu ZHANG,Xuelin WANG,Chengjia SHANG. Effect of Mn, Ni, Mo Contents on Microstructure Transition and Low Temperature Toughness of Weld Metal for K65 Hot Bending Pipe[J]. 金属学报, 2017, 53(6): 657-668.
[3] ZHANG Pengyan GAO Cairu ZHU Fuxian. MICROSMICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMULATE FUSION LINE IN EH40 SHIP PLATE STEEL FOR HIGH HEAT INPUT WELDING[J]. 金属学报, 2012, 48(3): 264-270.
[4] Lü Baochen LIU Haitao REN Xin WANG Xiaoliang LI Gang SUN Yuejun. AN ATOM DENSE PACKING MODEL FOR METALLIC GLASS WITH HIGH SOLUTE CONCENTRATION IN (PSEUDO–) TERNARY SYSTEMS[J]. 金属学报, 2012, 48(2): 240-244.
No Suggested Reading articles found!