Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (5): 693-702    DOI: 10.11900/0412.1961.2020.00237
Research paper Current Issue | Archive | Adv Search |
The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding
LI Zihan1, XIN Jianwen1, XIAO Xiao2, WANG Huan3, HUA Xueming1(), WU Dongsheng1
1.Welding and Laser Processing Institute, Shanghai Jiao Tong University, Shanghai 200240, China
2.School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
3.Hudong-Zhonghua Shipbuilding (Group) Co. , Ltd, Shanghai 200129, China
Cite this article: 

LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding. Acta Metall Sin, 2021, 57(5): 693-702.

Download:  HTML  PDF(7903KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Conduction plasma arc welding is widely used to weld thin stainless-steel plates in a liquefied natural gas carrier, in which high arc energy density can be achieved through the constraint effects of the constricting nozzle. However, the welding current is relatively low, such that a keyhole is not formed inside the molten pool in conduction plasma arc welding, causing significantly different arc physical characteristics and molten pool dynamic behaviors from those of keyhole plasma arc welding. In this study, a one-way coupled electrode-arc-molten pool model was developed, and spectral analysis, infrared thermography, and particle tracing methods were used to investigate the arc physical characteristics and molten pool dynamic behaviors in conduction plasma arc welding. In conduction plasma arc welding, numerical and experimental results show that plasma impinges on the surface and flows toward the edge of the molten pool. Two contrary convective eddies were found inside the molten pool. The counterclockwise eddy at the center of the molten pool is driven by arc pressure, Marangoni forces, and Lorentz forces, and the clockwise eddy at the rear part of the molten pool is driven by plasma shear stress, Marangoni forces, and buoyancy forces. Additionally, the maximum temperature of the molten pool in conduction plasma arc welding is higher than that in keyhole plasma arc welding due to higher arc energy density and weaker convection.

Key words:  conduction plasma arc welding      numerical simulation      spectral analysis      infrared thermography      particle tracing     
Received:  06 July 2020     
ZTFLH:  TG456.2  
Fund: Scientific Research Project of High Technology Ship in Ministry of Industry and Information Technology of China
About author:  HUA Xueming, professor, Tel: (021)54748940, E-mail: xmhua@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00237     OR     https://www.ams.org.cn/EN/Y2021/V57/I5/693

Fig.1  Framework of one-way coupled electrode-arc-molten pool model (q(x, y, z), τ(x, y, z), and p(x, y, z) indicate heat source, arc shear stress vector, and arc pressure in x, y, and z coordinate, respectively)
Fig.2  Directions of arc shear stress before (a) and after (b) the deformation of molten pool (o and n indicate horizontal vector and free surface normal vector, respectively)
ParameterUnitValueParameterUnitValue
Densitykg·m-36900Liquidus temperatureK1727
Viscositykg·m-1·s-15.9 × 10-3Solidus temperatureK1697
Specific heat (liquid state)J·kg-1·K-1720Boiling temperatureK3133
Specific heat (solid state)J·kg-1·K-1760Heat transfer coefficientW·m-2·K-420
Latent heat of fusionJ·kg-12.47 × 105Coefficient of thermal expansionK-11.5 × 10-4
Thermal conductivity (liquid state)W·m-1·K-128.4Surface tensionN·m-11.8
Thermal conductivity (solid state)W·m-1·K-133.2Surface tension gradientN·m-1·K-1-4.3 × 10-4
Table 1  Physical properties of SUS304 stainless steel used in this model
Fig.3  Schematic sketch of experimental set-up of plasma arc welding
Fig.4  Distributions of temperature and velocity of plasma arc in local coordinate system y0O0z0
Fig.5  Distributions of temperature and velocity at the plasma arc axis (a) and distributions of arc pressure and arc shear stress on the surface of base metal (b)
Fig.6  Distributions of temperature field, fluid flow field (a1-d1), and three-dimensional velocity field (a2-d2) at y0 = 0 at time t = 0.06 s (a1, a2), t = 0.38 s (b1, b2), t = 1.26 s (c1, c2), and t = 1.80 s (d1, d2)
Fig.7  Spectrum of plasma arc at y0 = 0 mm, z0 = 8.3 mm (a) and comparison of experimental and simulated temperatures of plasma arc (b)
Fig.8  The movement of a SiC particle
Fig.9  Thermography image of molten pool surface in local coordinate system x1O1y1 (a) and comparison of experimental and simulated temperatures of molten pool surface (b)
Fig.10  Comparison of calculated and experimental weld profiles
Fig.11  Schematics of momentum coupling mechanism (a) and energy coupling mechanism in conduction plasma arc welding (b)
Fig.12  Schematic of momentum coupling mechanism in keyhole plasma arc welding
1 Liu Z M, Cui S L, Luo Z, et al. Plasma arc welding: Process variants and its recent developments of sensing, controlling and modeling [J]. J. Manuf. Process., 2016, 23: 315
2 Westhoff R, Szekely J. A model of fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma torch [J]. J. Appl. Phys., 1991, 70: 3455
3 Yin F L, Hu S S, Zheng Z T, et al. Numerical analysis of arc in plasma arc welding [J]. Trans. China Weld. Inst., 2006, 27(8): 51
殷凤良, 胡绳荪, 郑振太等. 等离子弧焊电弧的数值模拟 [J]. 焊接学报, 2006, 27(8): 51
4 Lancaster J F. The physics of welding [J]. Phys. Technol., 1984, 15: 73
5 Wang X J, Wu C S, Chen M A. Numerical simulation of weld pool keyholing process in stationary plasma arc welding [J]. Acta Metall. Sin., 2010, 46: 984
王小杰, 武传松, 陈茂爱. 等离子弧定点焊熔池穿孔过程的数值分析 [J]. 金属学报, 2010, 46: 984
6 Xu B, Jiang F, Chen S J, et al. Numerical analysis of plasma arc physical characteristics under additional constraint of keyhole [J]. Chin. Phys., 2018, 27B: 034701
7 Wu D S, Tashiro S, Hua X M, et al. Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model [J]. Int. J. Heat Mass Transf., 2019, 141: 604
8 Metcalfe J C, Quigley M B C. Heat transfer in plasma-arc welding [J]. Weld. J., 1975, 54: S99
9 Evans D M, Huang D, McClure J C, et al. Arc efficiency of plasma arc welding [J]. Weld. J., 1998, 77: 53S
10 Tanaka M, Lowke J J. Predictions of weld pool profiles using plasma physics [J]. J. Phys, 2007, 40D: R1
11 Arul S, Sellamuthu R. Application of a simplified simulation method to the determination of arc efficiency of gas tungsten arc welding (GTAW) and experimental validation [J]. Int. J. Comput. Mater. Sci. Surf. Eng., 2011, 4: 265
12 Van A N, Tashiro S, Van H B, et al. Experimental investigation on the weld pool formation process in plasma keyhole arc welding [J]. J. Phys., 2018, 51D: 015204
13 Feng C, Qin G L, Meng X M, et al. Defect evolution of 409L stainless steel in high-speed TIG welding [J]. Mater. Manuf. Process., 2020, 35: 179
14 Van A N, Tashiro S, Tanaka M. Undercut formation mechanism in keyhole plasma arc welding [J]. Weld. J., 2019, 98: 202
15 Wu C S, Meng X M, Chen J, et al. Progress in numerical simulation of thermal processes and weld pool behaviors in fusion welding [J]. J. Mech. Eng., 2018, 54(2): 1
武传松, 孟祥萌, 陈 姬等. 熔焊热过程与熔池行为数值模拟的研究进展 [J]. 机械工程学报, 2018, 54(2): 1
16 Wu C S, Wang L, Ren W J, et al. Plasma arc welding: Process, sensing, control and modeling [J]. J. Manuf. Process., 2014, 16: 74
17 Song Y L, Li J Y. Thermo-equilibrium in welding arc plasma [J]. Trans. China Weld. Inst., 1994, 15: 138
宋永伦, 李俊岳. 焊接电弧等离子体的平衡性质 [J]. 焊接学报, 1994, 15: 138
18 Wang A Y, He J P, Wang X X, et al. Distribution characteristics and parameters effects of MPLW arc [J]. Trans. China. Weld. Inst., 2017, 38(8): 77
王昂洋, 何建萍, 王晓霞等. 微束等离子弧焊电弧温度场的分布特征及参数影响 [J]. 焊接学报, 2017, 38(8): 77
19 Zhang J N, He J P, Wang X X, et al. Multi-field coupling of arc in micro-plasma arc welding [J]. Trans. China. Weld. Inst., 2018, 39(6): 13
张济楠, 何建萍, 王晓霞等. 微束等离子弧焊电弧多物理场耦合 [J]. 焊接学报, 2018, 39(6): 13
20 Sakai P R, Lima M S F, Fanton L, et al. Comparison of mechanical and microstructural characteristics in maraging 300 steel welded by three different processes: LASER, PLASMA and TIG [J]. Proc. Eng., 2015, 114: 291
21 Jian X X, Wu C S, Zhang G K, et al. A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding [J]. J. Phys., 2015, 48D: 465504
22 Pan J J, Hu S S, Yang L J, et al. Numerical analysis of the heat transfer and material flow during keyhole plasma arc welding using a fully coupled tungsten-plasma-anode model [J]. Acta Mater., 2016, 118: 221
23 Li Y, Wang L, Wu C S. Simulation of keyhole plasma arc welding with electro-magneto-thermo-hydrodynamic interactions [J]. Int. J. Adv. Manuf. Technol., 2019, 101: 2497
24 Xin J W, Wu D S, Li F, et al. Influence mechanisms of keyhole on the arc characteristics in plasma arc welding [J]. J. Mech. Eng., 2020, 56(20): 82
忻建文, 吴东升, 李 芳等. 等离子弧焊匙孔对电弧物理特性影响规律的研究 [J]. 机械工程学报, 2020, 56(20): 82
25 Wu D S, Hua X M, Ye D J, et al. Understanding of humping formation and suppression mechanisms using the numerical simulation [J]. Int. J. Heat Mass Transf., 2017, 104: 634
26 Li T Q, Wu C S, Chen J. Transient variation of arc heat flux and pressure distribution on keyhole wall in PAW [J]. Weld. World, 2016, 60: 363
27 Wu D S, Van A N, Tashiro S, et al. Elucidation of the weld pool convection and keyhole formation mechanism in the keyhole plasma arc welding [J]. Int. J. Heat Mass Transf., 2019, 131: 920
28 Huang Y, Li F, Zhang Y L, et al. Spectral analysis of the dynamic behavior of a welding arc during pulsed gas metal arc welding of AA5083 aluminum alloy with ER5183 wire [J]. IEEE Trans. Plasma Sci., 2019, 47: 5078
29 Poueyo-Verwaerde A, Dabezies B, Fabbro R. Thermal coupling inside the keyhole during welding process [A]. Proceedings SPIE 2207, Laser Materials Processing: Industrial and Microelectronics Applications [C]. Vienna, Austria: SPIE, 1994: 176
30 Mao Z W, Zhong Q F, Zhou S L, et al. Numerical analysis of influence of nozzle diameter on plasma arc welding [J]. Hot Work. Technol., 2016, 45: 200
毛志伟, 钟庆飞, 周少玲等. 喷嘴孔径对等离子弧焊影响的数值分析 [J]. 热加工工艺, 2016, 45: 200
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[7] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[8] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[9] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[11] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[12] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[13] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[14] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[15] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
No Suggested Reading articles found!