Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (1): 16-28    DOI: 10.11900/0412.1961.2020.00200
Overview Current Issue | Archive | Adv Search |
Welding Crack of Ni-Based Alloys: A Review
YU Lei1,2, CAO Rui1,2()
1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

YU Lei, CAO Rui. Welding Crack of Ni-Based Alloys: A Review. Acta Metall Sin, 2021, 57(1): 16-28.

Download:  HTML  PDF(7636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recently, Ni-based weldments have been widely used in various industries, including aerospace, nuclear power, thermal power, and petrochemicals. In this paper, the classification and welding methods of Ni-based alloys are introduced. Fusion welding methods were mainly used for the welding of Ni-based alloys because of cost and technical limitations. The mechanism of welding cracks in Ni-based alloys and the effects of various elements on cracks are mainly reviewed. Solidification cracking, liquation cracking, ductility-dip cracking, and strain-age cracking frequently occurred in fusion welding processes. The appearance of a low-melting liquid film has been found to be the main reason for the relative clarity of the mechanisms of solidification cracking and liquation cracking. Ductility-dip cracking is still not clearly defined, and its mechanism in Ni-based alloys remains obscure. Strain-age cracking of Ni-based alloys is unique to precipitation-strengthened-Ni-based alloys and closely related to the precipitation rate. Though much research has been done, impurities and addition of elements have a major effect on welding cracks of Ni-based alloys. Therefore, the influence of most elements alone and the synergistic effects on cracks need further study.

Key words:  Ni-based alloy      welding crack      cracking mechanism      impurity element      addition element     
Received:  05 June 2020     
ZTFLH:  TG406  
Fund: National Natural Science Foundation of China(51761027)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00200     OR     https://www.ams.org.cn/EN/Y2021/V57/I1/16

Fig.1  Four types welding cracks of Ni-based alloy[7-10]
SystemkMaximum solubility / %Final eutectic temperature / oC
Ni-P0.020.32P870
Ni-SAbout 0About 0S637
Ni-B0.040.7B1093
Ni-Si0.78.2Si1143
Table 1  Equilibrium distribution coefficient, maximum solid solubility (mass fraction) and final eutectic temperature[2]
Fig.2  Schematics of four different microstructures in Nb-bearing Ni-based alloy[2]
AlloyPrecipitateRef.
Inconel 718MC[8]
Inconel 738γ', MC, M3B2, Ni-Zr intermetallics[57,58]
Inconel 617M23(C, B)6[59]
Inconel 939γ', MC[60]
Rene 80γ', M5B3[61]
K465γ', MC[62]
Table 2  Precipitate of component liquation in Ni-based alloys[8,57-62]
Fig.3  The mechanism of liquation cracking of 718 Ni-based alloy[8]
Fig.4  Schematic of ductility as a function of temperature[69] (DTR—ductility-dip temperature range, BTR—brittle temperature range, Emin—minimum critical stress)
Fig.5  Influence of intergranular precipitates on grain boundary sliding, strain concentration and void formation[9]
TypeElementDDC sensitivityMechanism
ImpurityHIncreaseThe interaction of the increase of the local plastic deformation near the grain
elementboundary and the decrease of the bonding force between the precipitate and
the grain boundary
S, PIncreaseSegregation at the grain boundary reduces the bonding strength of grain
boundary and causes grain boundary embrittlement
AdditionBDecreaseIncrease the bonding force of metal atoms on grain boundary, and increase the
elementfracture resistance of grain boundary
NbDecreaseFormation of NbC intergranular precipitate provides grain boundary locking,
changes grain boundary morphology, and hinders grain boundary sliding
and formation of porosity
MnDecreaseStrong affinity for S
TiDecreaseFormation of Ti rich nitrides and carbides makes the equilibrium phase changes
to (MTi)(CN) during the solidification temperature range, and provides grain
boundary locking effect
Table 3  Summary on the influence of elements on ductility-dip cracking (DDC)[9]
Fig.6  Schematic illustration for strain age cracking (SAC) of Ni-based alloy[76]
Fig.7  Effect of Al and Ti contents on strain age cracking sensitivity of Ni-based alloy [76]
Alloy systemElementInfluence
Rene 41CLow carbon content resists SAC

713C

C

Low carbon content is not conducive to resist SAC
Rene 41BBeneficial
Rene 41OHarmful
Table 4  Effect of alloy elements on SAC of Ni-based alloy
1 Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 20
郭建亭. 高温合金材料学 (上册) [M]. 北京: 科学出版社, 2008: 20
2 DuPont J N, Lippold J C, Kiser S D, translated by Wu Z Q, Zhang C, Yu M L, et al. Welding Metallurgy and Weldability of Nickel-Base Alloys [M]. Shanghai: Shanghai Scientific and Technological Literature Press, 2014: 2, 100, 103, 129, 214, 223, 235
DuPont J N, Lippold J C, Kiser S D著, 吴祖乾, 张 晨, 虞茂林等译. 镍基合金焊接冶金和焊接性 [M]. 上海: 上海科学技术文献出版社, 2014: 2, 100, 103, 129, 214, 223, 235
3 Park J H, Kim Y H, Baek H J, et al. A study on process development of super-TIG welding for 9% nickel steel with alloy 625 [J]. J. Manuf. Processes, 2019, 40: 140
4 Yang J. Property of arc surfacing Inconel alloy 625 cladding on 30CrMo steel [D]. Lanzhou: Lanzhou University of Technology, 2011
杨 洁. 30CrMo钢表面堆焊Inconel 625镍基合金性能的研究 [D]. 兰州: 兰州理工大学, 2011
5 Wei K, Zhang M C, Xie X S. Recrystallization mechanisms in hot working processes of a nickel-based alloy for ultra-supercritical power plant application [J]. Acta Metall. Sin., 2017, 53: 1611
韦 康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理 [J]. 金属学报, 2017, 53: 1611
6 Li Y F. Study of stress corrosion cracking susceptibility of nickel-based welds in safe-end dissimilar metal weld in pressurized water reactor [D]. Hefei: University of Science and Technology of China, 2018
李毅丰. 压水堆安全端异种金属焊接接头镍基焊缝材料应力腐蚀开裂敏感性研究 [D]. 合肥: 中国科学技术大学, 2018
7 Ye X. Microstructure evolution and hot cracking mechanism of Inconel 718 Ni-based superalloy thin-wall casting component welding joint [D]. Shanghai: Shanghai Jiao Tong University, 2015
叶 欣. Inconel 718合金薄壁铸件焊接接头组织演变和热裂纹研究 [D]. 上海: 上海交通大学, 2015
8 Zhang D M. Research on laser welding and the mechanism of liquation crack of 718 superalloy [D]. Shanghai: Shanghai University of Engineering Science, 2015
张冬梅. 718高温合金激光焊接及其液化裂纹形成机理研究 [D]. 上海: 上海工程技术大学, 2015
9 Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: Part Ⅱ-Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng., 2004, A380: 245
10 Norton S J. Development of a Gleeble based test for post weld heat treatment cracking in nickel alloys [D]. Ohio: The Ohio State University, 2002
11 Chen F. Microstructures and properties of 347 stainless steel with surface cladding of Inconel690 alloy and variation of them after hot isostatic pressing [D]. Lanzhou: Lanzhou University of Technology, 2013
陈 峰. 347不锈钢表面堆焊Inconel690合金组织与性能及热等静压对其影响 [D]. 兰州: 兰州理工大学, 2013
12 Xu C Z, Ao Y, Su D D, et al. Development of nuclear-grade ENiCrFe-7 nickel-base alloy electrode [J]. Heat Treat., 2020, 35(2): 21
徐长征, 敖 影, 苏东东等. 核级ENiCrFe-7镍基合金电焊条的研制 [J]. 热处理, 2020, 35(2): 21
13 Guo X, He P, Xu K, et al. Microstructure and mechanical properties of deposited metal for nuclear plant nickel alloy welding wire [J]. Trans. China Weld. Inst., 2020, 41(4): 26
郭 枭, 何 鹏, 徐 锴等. 一种核电用镍基合金焊丝熔敷金属的组织与性能 [J]. 焊接学报, 2020, 41(4): 26
14 Cherif S, Zakaria B. Effect of welding current on microstructures and mechanical properties of welded Ni-base superalloy INC738LC [J]. World J. Eng., 2018, 15: 14
15 Xu Y L, Yuan X W. Welding process test and crack control of UNSN06601 nickel-base alloy [J]. Mach. China, 2020, 4: 134
徐仰连, 袁相伟. UNSN06601镍基合金焊接工艺试验及裂纹控制 [J]. 中国机械, 2020, 4: 134
16 Liu Y J, Guo Z Y, Fang H P. Optimization of MIG surfacing process parameters of GH3128 nickel base alloy based on RSM [J]. Hot Work. Technol., 2020, 49(15): 114
刘拥军, 郭占英, 方海鹏. 基于RSM的GH3128镍基合金MIG堆焊工艺参数优化 [J]. 热加工工艺, 2020, 49(15): 114
17 Zhang Z L. Research on welding procedure of single-layer electroslag surfacing with band-electrode for ENiCrMo-3 grade nickel-base alloy [J]. Electr. Weld. Mach., 2020, 50(5): 67
张兆林. ENiCrMo-3等级镍基合金单层带极电渣堆焊工艺研究 [J]. 电焊机, 2020, 50(5): 67
18 Yu X P. Introduction of the welding technique of nickel base alloy NO6600 and NO6625 in an oxygen pipe [J]. Petro. Chem. Constr., 2020, 42(3): 51
于秀平. 镍基合金NO6600和NO6625氧气管线焊接工艺探讨 [J]. 石油化工建设, 2020, 42(3): 51
19 Wang R, Yang S L, Jia C C, et al. Study on microstructure of 718 nickel-based superalloy laser welded joint [J]. Hot Work. Technol., 2017, 46(3): 202
王 润, 杨尚磊, 贾晨程等. 718镍基合金激光焊接接头微观组织研究 [J]. 热加工工艺, 2017, 46(3): 202
20 Ma G Y, Wu D J, Niu F Y, et al. Microstructure evolution and mechanical property of pulsed laser welded Ni-based superalloy [J]. Opt. Laser. Eng., 2015, 72: 39
21 Wu D D, Chai D S, Ma G Y, et al. Effect of pulsed laser welding with filler wire on weld forming and microstructures of thin nickel-based alloy sheet [J]. Laser Optoelectron. Prog., 2017, 54(3): 191
吴东东, 柴东升, 马广义等. 脉冲激光填丝焊对镍基合金薄板焊缝成形及微观组织的影响 [J]. 激光与光电子学进展, 2017, 54(3): 191
22 Zhang H, Sun T B, Yu M X. Study on fatigue property of electron beam welded joint of GH99 nickel-based alloy [J]. Eng. Test, 2014, 54(4): 26
张 航, 孙通伯, 于明玄. GH 99镍基合金薄板电子束焊接头疲劳性能研究 [J]. 工程与试验, 2014, 54(4): 26
23 Li N, Wang G, Wang T, et al. Weldability of Inconel 718 and 304 stainless steel by electron beam welding [J]. Trans. China Weld. Inst., 2019, 40(2): 82
李 宁, 王 刚, 王 廷等. Inconel 718镍基合金与304不锈钢电子束焊接 [J]. 焊接学报, 2019, 40(2): 82
24 Cui W D, Wang S, Zhang S, et al. Influence of welding current on microstructure and properties of nickel-based alloy hardfacing by plasma transferred arc welding [J]. Weld. Join., 2017, (12): 36
崔文东, 王 爽, 张 松等. 堆焊电流对镍基合金等离子堆焊层组织及性能的影响 [J]. 焊接, 2017, (12): 36
25 Guo X M, Zheng Y G, Yao Z M. Cavitation erosion of PTA weld-surfaced Ni-based alloy layers [J]. Chin. J. Mater. Res., 2002, 16: 570
国旭明, 郑玉贵, 姚治铭. Ni基等离子堆焊合金的空蚀行为 [J]. 材料研究学报, 2002, 16(6): 570
26 Kim H J, Kim Y J. Wear and corrosion resistance of PTA weld surfaced Ni and Co based alloy layers [J]. Surf. Eng., 2013, 15: 495
27 Shi K, Yu Z S, Li J, et al. Effect of brazing holding time on microstructure and property of GH738/GH4169 vacuum brazing joint [J]. Hot Work. Technol., 2010, 39(1): 112
石 昆, 于治水, 李 军等. 钎焊保温时间对GH738与GH4169镍基合金真空钎焊接头组织性能的影响 [J]. 热加工工艺, 2010, 39(1): 112
28 Huang Z L, Lu S P, Li F Y, et al. Morphology of boride brittle phase in nickel-base alloy brazing joint and its elimination method [J]. J. Mater. Eng., 1984, (2): 26
黄振隆, 卢寿平, 李风英等. 镍基合金钎焊接头中的硼化物脆性相形态及其消除方法 [J]. 材料工程, 1984, (2): 26
29 Zhang L X, Fen J C. Interface structure and strength analysis of brazed GH3044 nickel-based alloy joint [J]. Mater. Sci. Technol., 2009, 17: 770
张丽霞, 冯吉才. GH3044镍基合金钎焊接头的界面组织和强度分析 [J]. 材料科学与工艺, 2009, 17: 770
30 Yu Z S, Shi K, Li R F. Effect of brazing clearance on microstructure and properties of vacuum brazing lap joint of Ni-based alloys [J]. Mater. Mech. Eng., 2010, 34(7): 5
于治水, 石 昆, 李瑞峰. 钎缝间隙对不同镍基合金真空钎焊搭接接头组织和性能的影响 [J]. 机械工程材料, 2010, 34(7): 5
31 Yu Z S, Shi K, Li R F. Effects of brazing temperature on vacuum joint microstructure and microhardness of inconel superalloy [J]. Hot Work. Technol., 2009, 38(17): 116
于治水, 石 昆, 李瑞峰. 钎焊温度对镍基合金真空钎焊接头组织及硬度的影响 [J]. 热加工工艺, 2009, 38(17): 116
32 Han F, Wang B, Kong Q J, et al. Brazing of K465 alloy K465 and GH3039 dissimilar alloy [J]. Weld. Technol., 2011, 40(5): 26
韩 峰, 王 斌, 孔庆吉等. K465合金及K465与GH3039异种合金的钎焊 [J]. 焊接技术, 2011, 40(5): 26
33 Xu H J. The superplastic forming and diffusion bonding of Inconel 718 alloy [J]. Aerosp. Mater. Technol., 1997, 27(4): 36
徐海江. 因康镍718合金的超塑成形和扩散连接 [J]. 宇航材料工艺, 1997, 27(4): 36
34 Han W B, Zhang K F, Wang B, et al. Superplasticity and diffusion bonding of IN718 superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2007, 20: 307
35 Lin T S, Li H X, He P, et al. Effect of bonding parameters on microstructures and properties during TLP bonding of Ni-based super alloy [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2112
36 Hou J B, Dong B M, Ouyang X L. TLP bonding of Ni3Al base alloy(IC10) [J]. J. Mater. Eng., 2002, (suppl.): 288
37 Bakhtiari R, Shamsabadi A Y, Moradi K A. Shear strength/microstructure relationship for dissimilar IN738/IN718 TLP joints [J]. Weld. World, 2020, 64: 219
38 Wan D, Fang W P, Chen H X, et al. Research progress of interlayer alloys for transient liquid phase (TLP) diffusion bonding of Ni-based superalloys [J]. Weld. Join., 2016, (8): 20
万 娣, 房卫萍, 陈和兴等. 镍基高温合金TLP扩散焊中间层材料研究进展 [J]. 焊接, 2016, (8): 20
39 Bo C Y, Yang Y T, Zhou S F, et al. Research status and development on the welding solidification cracking sensitivity of the nickel-based corrosion-resistance materials [J]. Weld. Join., 2006, (2): 15
薄春雨, 杨玉亭, 周世锋等. 镍基耐蚀材料焊接结晶裂纹敏感性的研究现状与趋势 [J]. 焊接, 2006, (2): 15
40 Zhang H Y. Study of S, P on the solidification cracking sensitivity for Inconel 690 welding wire deposited metal [D]. Harbin: China Academy of Machinery Science and Technology, 2011
张皓月. S、P对Inconel 690焊丝熔敷金属结晶裂纹敏感性影响的研究 [D]. 哈尔滨: 机械科学研究总院, 2011
41 Li G. Microstructure, properties and mechanism on hot crackings of laser welded dissimilar joints with filler wire in nuclear power plants [D]. Shanghai: Shanghai Jiao Tong University, 2015
李 刚. 核电异种金属激光填丝焊接头组织与性能及热裂纹形成机理 [D]. 上海: 上海交通大学, 2015
42 Borland J C. Generalized theory of super-solidus cracking in welds and castings-an initial development [J]. Brit. Weld. J., 1960, 7: 508
43 DuPont J N, Michael J R, Newbury B D. Welding metallurgy of alloy HR-160 [J]. Weld. J., 1999, 78: 408
44 Mizia R E, Michael J R, Williams D B, et al. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications-part Ⅱ: Nickel-based alloys [J]. Weld. J., 2004, 83: 289
45 Zhang W Y. Welding Metallurgy (Fundamental) [M]. Beijing: China Machine Press, 1995: 280
张文钺. 焊接冶金学(基本原理) [M]. 北京: 机械工业出版社, 1995: 280
46 DuPont J N, Robino C V, Anderson T D. Influence of Gd and B on solidification behaviour and weldability of Ni-Cr-Mo alloy [J]. Sci. Technol. Weld. Join., 2008, 13: 550
47 Vincent R. Precipitation around welds in the nickel-base superalloy, Inconel 718 [J]. Acta Metall., 1985, 33: 1205
48 Cieslak M J, Stephens J J, Carr M J. A study of the weldability and weld related microstructure of cabot alloy 214 [J]. Metall. Trans., 1988, 19A: 657
49 Richards N L, Chaturvedi M C. Effect of minor elements on weldability of nickel base superalloys [J]. Int. Mater. Rev., 2000, 45: 109
50 Näkki J, Tuominen J, Vuoristo P. Effect of minor elements on solidification cracking and dilution of alloy 625 powders in laser cladding [J]. J. Laser Appl., 2017, 29: 012014
51 Mostafaei M, Abbasi S M. Influence of Zr content on the incipient melting behavior and stress-rupture life of CM247 LC nickel base superalloy [J]. J. Alloys Compd., 2015, 648: 1031
52 Bo C Y, Yang Y T, Li X Y, et al. Effect of Nb on welding solidification cracking of 690 nickel alloy surfacing metal [J]. Weld. Join., 2006, (6): 41
薄春雨, 杨玉亭, 李向阳等. Nb对690镍合金带极堆焊金属结晶裂纹的影响 [J]. 焊接, 2006, (6): 41
53 Bo C Y, Yang Y T, Chou S G, et al. Solidification cracking mechanism of 690 nickel-based alloy surfacing metal [J]. Trans. China Weld. Inst., 2007, 28(10): 69
薄春雨, 杨玉亭, 丑树国等. 690镍基合金焊接结晶裂纹形成机理分析 [J]. 焊接学报, 2007, 28(10): 69
54 Dupont J N, Robino C V, Marder A R. Modeling solute redistribution and microstructural development in fusion welds of Nb-bearing superalloys [J]. Acta Mater., 1998, 46: 4781
55 Fen Z C, Yu E J, Zhu H D, et al. Investigation on the welding liquation cracks in cast Ni-base superalloys [J]. Trans. China Weld. Inst., 1983, 4(2): 79
冯钟潮, 于尔靖, 朱鸿德等. 铸造镍基合金焊接液化裂纹 [J]. 焊接学报, 1983, 4(2): 79
56 Thompson E G, Genculu S. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test [J]. Weld. J., 1983, 62: 337S
57 Ojo O A, Richards N L, Chaturvedi M C. Liquation of various phases in HAZ during welding of cast Inconel* 738LC [J]. Mater. Sci. Technol., 2004, 20: 1027
58 Chen K C, Chen T C, Shiue R K, et al. Liquation cracking in the heat-affected zone of IN738 superalloy weld [J]. Metals, 2018, 8: 387
59 Ren W J, Lu F G, Yang R J, et al. Liquation cracking in fiber laser welded joints of Inconel 617 [J]. J. Mater. Process. Technol., 2015, 226: 214
60 González M A, Martínez D I, Pérez A, et al. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy [J]. Mater. Charact., 2011, 62: 1116
61 Ojo O A, Zhang H R. Analytical electron microscopy study of Boron-rich grain boundary microconstituent in directionally solidified Rene 80 superalloy [J]. Metall. Mater. Trans., 2008, 39A: 2799
62 Li Q G, Lin X, Wang X H, et al. Research on the cracking control of laser additive repaired K465 superalloy [J]. Rare Met. Mater. Eng., 2017, 46: 955
李秋歌, 林 鑫, 王杏华等.激光增材修复K465高温合金裂纹控制研究 [J]. 稀有金属材料与工程, 2017, 46: 955
63 Baeslack Ⅲ W A, Nelson D E. Morphology of weld heat-affected zone liquation in cast alloy 718 [J]. Metallography, 1986, 19: 371
64 Chen W, Chaturvedi M C, Richards N L. Effect of boron segregation at grain boundaries on heat-affected zone cracking in wrought INCONEL 718 [J]. Metall. Mater. Trans., 2001, 32A: 931
65 Kelly T J. Elemental effects on cast 718 weldability [J]. Weld. J., 1989, 68: 44
66 Thompson R G. Microfissuring of alloy 718 in the weld heat-affected zone [J]. JOM, 1988, 40(7): 44
67 Haddrill D M, Baker R G. Microcracking in austenitic weld metal [J]. Brit. Weld. J., 1965, 12
68 Hemsworth B, Boniszewski T, Eaton N F. Classification and definition of high temperature welding cracks in alloys [J]. Met. Constr. Brit. Weld. J., 1969, 1: 5
69 Nissley N. Intermediate temperature grain boundary embrittlement in Ni-base weld metals [D]. Ohio: The Ohio State University, 2006
70 Yamaguchi S, Kobayashi H, Matsumiva T, et al. Effect of minor elements on hot workability of nickel-base superalloys [J]. Met. Technol., 1979, 6: 170
71 Noecker II F F, DuPont J N. Metallurgical investigation into ductility dip cracking in Ni-based alloys: Part Ⅱ [J]. Weld. J., 2009, 88: 62S
72 Cao R, Liu G, Chen J H, et al. Formation mechanism and research progress of ductility dip cracking in welding of nickel-based materials [J]. Weld. Join., 2018, (7): 7
曹 睿, 刘 刚, 陈剑虹等. 镍基材料焊接中高温失塑裂纹DDC的生成机理及研究进展 [J]. 焊接, 2018, (7): 7
73 Young G A, Capobianco T E, Penik M A, et al. The mechanism of ductility dip cracking in nickel-chromium alloys [J]. Weld. J., 2008, 87: 31S
74 Zhang Y C, Nakagawa H, Matsuda F. Weldability of Fe-36%Ni alloy (report Ⅵ): Further investigation on mechanism of reheat hot cracking in weld metal (materials, metallurgy & weldability) [J]. Trans. JWRI, 1985, 14(2): 125
75 Du Z Y. Material Connection Principle [M]. Beijing: China Machine Press, 2011: 221
杜则裕. 材料连接原理 [M]. 北京: 机械工业出版社, 2011: 221
76 Kou S. Welding Metallurgy [M]. 2nd Ed., New York: John Wily & Sons, 2002: 375
77 Yin Y, Zhang L L, Li S T, et al. Study on crack of K438 superalloy repair welding joint after heat treatment [J]. Hot Work. Technol., 2017, 46(7): 243
尹 懿, 张丽玲, 李水涛等. K438高温合金补焊接头热处理裂纹研究 [J]. 热加工工艺, 2017, 46(7): 243
78 Xie J L. Microstructures, mechanical properties and defect control of welding joints of Ni-based superalloy for skew plate frame [D]. Hefei: University of Science and Technology of China, 2019
谢吉林. 斜支板承力框架用高温合金焊接接头组织、力学性能与缺陷控制研究 [D]. 合肥: 中国科学技术大学, 2019
79 McKeown D. Re-heat cracking in high nickel alloy heat-affected zone [J]. Weld. J., 1971, 50: 201
[1] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[2] ZHANG Maolong, LU Yanhong, CHEN Shenghu, RONG Lijian, LU Hao. Effect of Dilution Ratio of the First 309L Cladding Layer on the Microstructure and Mechanical Properties of Weld Joint of Connecting Pipe-Nozzle to Safe-End in Nuclear Power Plant[J]. 金属学报, 2020, 56(8): 1057-1066.
[3] Qing ZHAO,Shuang XIA,Bangxin ZHOU,Qin BAI,Cheng SU,Baoshun WANG,Zhigang CAI. EFFECT OF DEFORMATION AND THERMOMECHA- NICAL PROCESSING ON GRAIN BOUNDARY CHARACTER DISTRIBUTION OF ALLOY 825 TUBES[J]. 金属学报, 2015, 51(12): 1465-1471.
[4] XIE Jun, TIAN Sugui, LIU Jiao, ZHOU Xiaoming, SU Yong. FORMATION AND ANALYSIS OF DISLOCATION NETWORK OF FGH95 POWDER METALLURGY Ni-BASED SUPERALLOY DURING CREEP[J]. 金属学报, 2013, 49(7): 838-844.
[5] ZHOU Binghai ZHAI Ziqing. STOCHASTIC PROCESS-BASED MODELING METHOD FOR PITTING CORRSION OF Ni-BASED ALLOY 690[J]. 金属学报, 2011, 47(9): 1159-1166.
[6] ZHANG Shenghan TAN Yu LIANG Kexin. PHOTOELECTROCHEMICAL STUDY ON SEMICONDUCTOR PROPERTIES OF Ni-BASED ALLOYS OXIDE FILMS FORMED IN 288℃ HIGH TEMPERATURE WATER[J]. 金属学报, 2011, 47(9): 1147-1152.
[7] XIN Li; LI Meishuan; LI Tiefan (Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015). INFLUENCES OF Y~+-IMPLANTATION ON GROWTH STRESS OF OXIDE SCALE FORMED ON ALUMINIZED Ni-BASE ALLOY[J]. 金属学报, 1996, 32(9): 949-954.
No Suggested Reading articles found!