Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (12): 1581-1588    DOI: 10.11900/0412.1961.2021.00175
Research paper Current Issue | Archive | Adv Search |
Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel
ZHU Dongming1, HE Jiangli2,3, SHI Genhao2,3, WANG Qingfeng2,3()
1.China Railway Jiujiang Bridge Engineering Co., Ltd., Jiujiang 332004, China
2.College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
3.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Cite this article: 

ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel. Acta Metall Sin, 2022, 58(12): 1581-1588.

Download:  HTML  PDF(3999KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As China's economy enters a stage of high-quality development, it is important to study high-performance bridge steels with high strength, high toughness, high efficiency, and easy welding. Presently, coarse-grained heat-affected zones (CGHAZs) of high-performance bridge steels are prone to coarse-grain embrittlement, which reduces its impact toughness. To improve their low-temperature toughness, the relationship between their microstructure and impact toughness has been extensively researched and discussed. However, the control connection and internal mechanism between the bainite microstructure and impact toughness have not been clarified. In this study, the simulated samples of CGHAZs in Q500qE steel with varying heat inputs, from 15 to 30 kJ/cm, were reproduced in Gleeble 3500 thermal simulation-testing machine. The effect of different heat inputs on the microstructure, impact toughness of CGHAZs, and their inherent mechanism was discussed and analyzed in-depth using OM, SEM, and EBSD. The results indicate that the microstructure of each simulated sample of CGHAZs in Q500qE steel was composed of lath-like bainite (LB) and granular-like bainite (GB). The LB increased, the GB reduced, phase-transition temperature (Ar3) declined, and the bainitic packet/block substructure refined as the welding heat input decreased. In addition, with the decreased heat inputs, the Charpy impact energy (KV2) at -40oC of CGHAZs is enhanced because of the refined microstructure. The impact fracture of all samples showed cleavage fracture characteristics, and the cleavage face size of the simulated samples of CGHAZs decreased due to the reduced heat inputs. Compared with prior austenite grain boundary and bainite block, the bainite packet is the most effective microstructural unit for controlling the impact toughness of CGHAZs in Q500qE steel, and its boundary effectively facilitates the prevention of further propagation of a secondary crack.

Key words:  Q500qE steel      CGHAZ      welding thermal simulation      impact toughness      bainite     
Received:  26 April 2021     
ZTFLH:  TG401  
Fund: National Natural Science Foundation of China(51671165)
About author:  WANG Qingfeng, professor, Tel: 13933560072, E-mail: wqf67@ysu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00175     OR     https://www.ams.org.cn/EN/Y2022/V58/I12/1581

Fig.1  Original microstructure of the Q500qE steel plate
Fig.2  Welding thermal cycles of CGHAZs with different heat inputs (CGHAZ—coarse grained heat affected zone)
Fig.3  OM images of CGHAZs with different heat inputs (LB—lath-like bainite, GB—granular-like bainite)
(a) 15 kJ/cm (b) 20 kJ/cm (c) 25 kJ/cm (d) 30 kJ/cm
Fig.4  Typical SEM images of CGHAZs with different heat inputs (PAGB—prior austenite grain boundary)
(a) 15 kJ/cm (b) 20 kJ/cm (c) 25 kJ/cm (d) 30 kJ/cm
Ej / (kJ·cm-1)MicrostructureDγ / μmDP / μmWB / μmDf / μm
1592%LB + 8%GB41.2 ± 418.9 ± 24.0 ± 0.515 ± 2
2084%LB + 16%GB68.7 ± 548.2 ± 54.5 ± 0.528 ± 2
2578%LB + 22%GB81.7 ± 864.3 ± 65.2 ± 0.632 ± 3
3071%LB + 29%GB99.3 ± 978.8 ± 85.6 ± 0.737 ± 3
Table 1  Size measurement results of microstructure and statistics of cleavage face size of CGHAZs with different heat inputs
Fig.5  EBSD images of CGHAZs with different heat inputs
(a) 15 kJ/cm (b) 20 kJ/cm (c) 25 kJ/cm (d) 30 kJ/cm
Fig.6  Charpy impact energies at -40oC for CGHAZs with different heat inputs
Fig.7  Impact fracture morphologies of CGHAZs with different heat inputs
(a) 15 kJ/cm (b) 20 kJ/cm (c) 25 kJ/cm (d) 30 kJ/cm
Fig.8  Secondary crack morphologies of CGHAZs with typical heat inputs of 15 kJ/cm (a) and 25 kJ/cm (b)
Fig.9  Expansion curves and Ar3 of CGHAZs with different heat inputs (Ar3—the starting temperature for γα transformation)
Fig.10  Cleavage facet size as functions of PAG size, bainitic packet size, and bainitic block width
1 Editorial Department of China Journal of Highway. Review on China's bridge engineering research: 2021 [J]. China J. Highway Transp., 2021, 34(2): 1
《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021 [J]. 中国公路学报, 2021, 34(2): 1
doi: 10.19721/j.cnki.1001-7372.2021.02.001
2 Fan Y. Study on controlling of mechanical and corrostion-resistance proeperties OFQ500EHPS steel for bridge [D]. Qinhuangdao: Yanshan University, 2017
范益. Q500EHPS桥梁钢力学性能和耐蚀性能的调控研究 [D]. 秦皇岛: 燕山大学, 2017
3 Huang H Q, Che P, Pei X F, et al. Development status and prospects of welding technology for bridge steel structures in my country [J]. Weld Technol., 2019, 48(suppl.2) : 60
黄会强, 车平, 裴雪峰 等. 我国桥梁钢结构焊接技术发展现状及展望 [J]. 焊接技术, 2019, 48(): 60
4 Hu X P, Wen D H, Li Z G. Development of high performance steel used for bridge [J]. Heat Process. Technol., 2008, 37(22): 91
胡晓萍, 温东辉, 李自刚. 高性能桥梁用钢的发展 [J]. 热加工工艺, 2008, 37(22): 91
5 Yan Z G, Zhao X X, Xu X J. Study on applicability of Q500qE steel for Hutong Yangtze River Bridge [J]. China Railw. Sci., 2017, 38(3): 40
闫志刚, 赵欣欣, 徐向军. 沪通长江大桥Q500qE钢的适用性研究 [J]. 中国铁道科学, 2017, 38(3): 40
6 Li Y G, Zhu X H, Liu Z G, et al. Experimental study of welding technique for Q500qE steel used to Tianshenggang Navigational Channel Bridge of Hutong Changjiang River Bridge [J]. World Bridge, 2018, 46(1): 61
李彦国, 朱新华, 刘志刚 等. 沪通长江大桥天生港专用航道桥Q500qE钢焊接工艺试验研究 [J]. 世界桥梁, 2018, 46(1): 61
7 Gao J, Qu W S, Zhou K G. Research and development of high-performance weather-resistant wide and heavy steel plate Q50QqENH with rare earth for bridge [J]. Baogang Technol., 2020, 46(3): 39
高军, 屈文胜, 周可哥. 稀土高性能耐候桥梁宽厚钢板Q500qENH研发 [J]. 包钢科技, 2020, 46(3): 39
8 Bei Y C, Xu X J. Study on weldability experimental for high performance Q500qE steel [J]. Met. Process. (Hot Work.), 2018, (12): 42
贝玉成, 徐向军. 高性能Q500qE钢焊接性试验研究 [J]. 金属加工(热加工), 2018, (12): 42
9 Chen J X, Ren X L, He X, et al. Development of submerged arc welding wire for new high performances bridge steel Q500qE [J]. Weld. Technol., 2018, 47(3): 66
陈建雄, 任希乐, 何秀 等. 新型高性能桥梁钢Q500qE用埋弧焊丝的研制 [J]. 焊接技术, 2018, 47(3): 66
10 Ma K, Zhao L P, He S Q, et al. The development of YSF105Q agglomerated flux for submerged welding of Q500qE high strength bridge steel [J]. Mach. Manuf. Dig. (Weld. Book), 2018, (2): 35
马昆, 赵利鹏, 何少卿 等. Q500qE高强度桥梁钢埋弧焊用YSF105Q烧结焊剂的研制 [J]. 机械制造文摘(焊接分册), 2018, (2): 35
11 Shi Y W, Han Z X. Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel [J]. J. Mater. Process. Technol., 2008, 207: 30
doi: 10.1016/j.jmatprotec.2007.12.049
12 Xu W W, Wang Q F, Pan T, et al. Effect of welding heat input on simulated HAZ microstructure and toughness of a V-N microalloyed steel [J]. J. Iron Steel Res. Int., 2007, 14(5 suppl.1) : 234
13 Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
李学达, 尚成嘉, 韩昌柴 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
doi: 10.11900/0412.1961.2015.00610
14 Peng Y, Song L, Zhao L, et al. Research status of weldability of advanced steel [J]. Acta Metall. Sin., 2020, 56: 601
doi: 10.11900/0412.1961.2019.00369
彭云, 宋亮, 赵琳 等. 先进钢铁材料焊接性研究进展 [J]. 金属学报, 2020, 56: 601
doi: 10.11900/0412.1961.2019.00369
15 Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel [J]. Mater. Sci. Eng., 2011, A529: 192
16 Hu J, Du L X, Wang J J, et al. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V-N high strength steel [J]. Mater. Sci. Eng., 2013, A577: 161
17 Cui J J, Zhu W T, Chen Z Y, et al. Effect of simulated cooling time on microstructure and toughness of CGHAZ in novel high-strength low-carbon construction steel [J]. Sci. Technol. Weld. Join., 2019, 25: 169
doi: 10.1080/13621718.2019.1661116
18 Zhou P S, Wang B, Wang L, et al. Effect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel [J]. Mater. Sci. Eng., 2018, A722: 112
19 Yang Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone [J]. Mater. Des., 2013, 43: 485
doi: 10.1016/j.matdes.2012.07.015
20 Chen H D, Zhang S J, Liu D S. Phase transformation and joint properties of bridge steel plate Q500qE welding coarse grain zone [J]. Trans. Chin. Weld. Soc., 2017, 38(7): 123
陈焕德, 张淑娟, 刘东升. 桥梁钢板Q500qE焊接粗晶区相变及接头性能 [J]. 焊接学报, 2017, 38(7): 123
21 Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
doi: 10.1016/j.actamat.2004.01.025
22 Morito S, Saito H, Ogawa T, et al. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. Trans. Iron Steel Inst. Jpn., 2005, 45: 91
23 Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
24 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
doi: 10.1016/S1359-6454(02)00577-3
25 Wang H B, Wang F L, Shi G H, et al. Effect of welding heat input on microstructure and impact toughness in CGHAZ of X100Q steel [J]. J. Iron Steel Res. Int., 2019, 26: 637
doi: 10.1007/s42243-019-00271-5
26 Nohava J, Haušild P, Karlı́K M, et al. Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel [J]. Mater. Charact., 2002, 49: 211
doi: 10.1016/S1044-5803(02)00360-1
27 Yang Y, Shang C J, Nie W J, et al. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content [J]. Mater. Sci. Eng., 2012, A558: 692
28 Zhang C Y, Wang Q F, Ren J X, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel [J]. Mater. Sci. Eng., 2012, A534: 339
29 Daigne J, Guttmann M, Naylor J P. The influence of lath boundaries and carbide distribution on the yield strength of 0.4%C tempered martensitic steels [J]. Mater. Sci. Eng., 1982, 56: 1
30 Terasaki H, Shintome Y, Takada A, et al. Visualization and analysis of variant grouping in continuously cooled low-carbon steel welds [J]. Metall. Mater. Trans., 2014, 45A: 3554
31 Olasolo M, Uranga P, Rodriguez-Ibabe J M, et al. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V microalloyed steel [J]. Mater. Sci. Eng., 2011, A528: 2559
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[3] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[4] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[5] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[6] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[7] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[8] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[9] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[10] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
[11] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[12] Zongyuan ZOU, Xiaokui XU, Yinxiao LI, Chao WANG. Study on the Method of Improving the Toughness of CGHAZ for High Heat Input Welding Steels[J]. 金属学报, 2017, 53(8): 957-967.
[13] Zhiqiang SHU,Pengbin YUAN,Zhiying OUYANG,Danmei GONG,Xueming BAI. Effects of Tempering Temperature on Microstructure and Mechanical Properties of Drill Pipe Steel 26CrMo[J]. 金属学报, 2017, 53(6): 669-676.
[14] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[15] Liansheng CHEN, Yue LI, Mingshan ZHANG, Yaqiang TIAN, Xiaoping ZHENG, Yong XU, Shihong ZHANG. Effect of Intercritical Dislocation Multiplication to Mn Partitioning and Microstructure Evolution of Bainite in Low Carbon Steel[J]. 金属学报, 2017, 53(11): 1418-1426.
No Suggested Reading articles found!