Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 223-229    DOI: 10.11900/0412.1961.2014.00380
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND PROPERTIES OF LEAD-FREE FREE-CUTTING GRAPHITE-BRASS PREPARED BY GRAPHITIZATION OF CEMENTITE
XUE Yingyu(), TANG Jiancheng(), ZHUO Haiou, YE Nan, WU Tong, ZHOU Xusheng
School of Materials Science and Engineering, Nanchang University, Nanchang 330031
Cite this article: 

XUE Yingyu, TANG Jiancheng, ZHUO Haiou, YE Nan, WU Tong, ZHOU Xusheng. MICROSTRUCTURES AND PROPERTIES OF LEAD-FREE FREE-CUTTING GRAPHITE-BRASS PREPARED BY GRAPHITIZATION OF CEMENTITE. Acta Metall Sin, 2015, 51(2): 223-229.

Download:  HTML  PDF(5282KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphite is believed to be an attractive candidate substituting for lead to produce free-cutting brasses, because of its lubricating property and the role in chip breaking. The major hindrances of developing graphite-brass are the large density difference and nonwetting characteristic between graphite and copper. In this work, eutectic cast iron (ECI) was added into brasses instead of other form of carbon source. Cementite particles were in situ formed during casting, then annealing treatment was conducted to facilitate the graphitization of cementite particles, and finally uniformly dispersed graphite particles with the size of 3~6 mm were obtained in brass alloys. SEM and EDS observation indicate that the microstructures of the graphite-brass are refined with the cast iron content increased from 1% to 7%. The tensile strength and microhardness are increased, and the chip morphologies are improved gradually with the cast iron content increased from 1% to 7%. However, the graphite brass with 7% addition shows suboptimal chip morphologies because of the segregation of graphite particles. The chips of graphite brasses with 5% addition are desired, which are short and discontinuous. Its tensile strength, elongation and Vickers hardness are 502.00 MPa, 22.6% and 148.9 HV, respectively. The graphite brass shows comparable machinability to conventional lead brass HPb59-1。

Key words:  graphite-brass      graphitization of cementite      microstructure      machinability     
Received:  10 July 2014     
ZTFLH:  TG146.1  
Fund: Supported by National Natural Science Foundation of China (Nos.51471083, 51271090 and 51364036)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00380     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/223

Fig.1  SEM images of as-cast (a) and annealed (b) brass added with 5% eutectic cast iron (ECI) and EDS corresponding to points i (c), ii (d), iii (e) and iv (f) in Figs.1a and b
Fig.2  Schematics of solidification and annealing of graphite-brass (L—liquid)
Fig.3  SEM images of annealed graphite-brass added with 1% (a), 3% (b), 5% (c) and 7% (d) ECIs
Fig.4  Particle size distributions of graphite in annealed graphite-brass added with different ECIs
ECI / % sb / MPa s0.2 / MPa d / % Hardness / HV
1 432.36 212.07 27.5 134.5
3 468.66 238.60 22.7 140.7
5 502.00 249.00 19.2 148.9
7 543.31 276.38 16.8 168.3
HPb59-1[27] ≥440 ≥10
Table 1  Mechanical properties of annealed graphite-brass added with different contents of ECIs and HPb59-1
Fig.5  The chips morphologies of annealed graphite-brass added with 1% (a), 3% (b), 5% (c) and 7% (d) ECIs
[1] Kuyucak S, Sahoo M. Can Metall Quart, 1996; 35: 1
[2] Huang J S, Peng C Q, Zhang S Q, Huang B Y. Chin J Nonferrous Met, 2006; 16: 1486
(黄劲松, 彭超群, 章四琪, 黄伯云. 中国有色金属学报, 2006; 16: 1486)
[3] EI-Sherif R M, Ismail K M, Badawy W A. Electrochim Acta, 2004; 49: 5139
[4] Nakano A, Higashiiriki K, Rochman N T. J Jpn Inst Met, 2005; 69: 198
[5] Fontaine A L, Keast V J. Mater Charact, 2006; 57: 424
[6] Vilarinho C, Davim J P, Soares D, Castro F. J Mater Process Technol, 2005; 170: 441
[7] Jang Y, Kim S, Han S. Metall Mater Trans, 2005; 36: 1060
[8] Xiao L R, Shu X P, Yi D Q, Zhang L H, Qin J L, Hu J R. J Cent South Univ (Sci Technol), 2009; 40: 117
(肖来荣, 舒学鹏, 易丹青, 张路怀, 覃静丽, 胡加瑞. 中南大学学报(自然科学版), 2009; 40: 117)
[9] Peters D T. Mod Cast, 1997; 87: 57
[10] Zhang M, Zhang S Q, Cai J H, Lou H R, Xie X. US Pat, 0289094, 2006
[11] Taha M A, E-Mahallawy N A, Mousa T M, Hamouda R M, Yousef A F A G. Mater Wiss Werkst, 2012; 40: 699
[12] Xu C K, Hu Z Q, Zhang S Q. US Pat, 8273193, 2010
[13] Oishi K. US Pat, 6413330, 2002
[14] Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W, Heimberg J A, Zandbergen H W. Phys Rev Lett, 2004; 92: 126101
[15] Nath D, Gupta A K, Rohatgi P K. J Mater Sci Lett, 1997; 16: 1595
[16] Kim J K, Rohatgi P K, Choi J O. Met Mater Int, 2005; 11: 333
[17] Imai H, Kosaka Y, Kojima A, Li S F, Kondoh K, Umeda J, Atumi H. Powder Technol, 2010; 198: 417
[18] Rohatgi P K, Nath D, Kim J K. Corros Sci, 2000; 42: 1553
[19] Rohatgi P K, Ray S, Church N. AFS Trans, 1992; 100: 1
[20] Rohatgi P K, Nath D, Ray S. AFS Trans, 1993; 104: 49
[21] Huang J S, Zhou Z C. Chin Pat, 10030662, 2008
(黄劲松, 周忠诚. 中国专利, 10030662, 2008)
[22] Huang J S, Zhou Z C. Chin Pat, 10030409, 2008
(黄劲松, 周忠诚. 中国专利, 10030409, 2008)
[23] Song J M, Lui T S, Chen L H, Kuo B C. Metall Mater Trans, 2000; 31A: 275
[24] Johnson W, Mehl R. Trans AIME, 1939; 135: 461
[25] Avrami M. J Chem Phys, 1940; 8: 212
[26] Dai F P, Cao C D, Wei B B. Sci China, 2007; 50G: 509
[27] Trent E M, Wright P K. Metal Cutting. 4th Ed, Woburn: Butterworth-Heinemann, 2000: 23
[28] Garcia P, Rivera S, Palacios M, Belzunce J. Eng Fail Anal, 2010; 17: 771
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!