|
|
EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL |
MO Wenlin1,2, ZHANG Xu1, LU Shanping1,2( ), LI Dianzhong1, LI Yiyi1 |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
MO Wenlin, ZHANG Xu, LU Shanping, LI Dianzhong, LI Yiyi. EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL. Acta Metall Sin, 2015, 51(2): 230-238.
|
Abstract Ni-based filler metal is one of the most important filler metals in building the key components of nuclear power plants, however, ductility-dip-cracking (DDC) and inclusion defects form easily in the weldment and need to be repaired afterward. The precipitation of M23C6 (M=Cr, Fe) at grain boundaries will promote the nucleation and propagation of DDC. Adding Ti can form Ti(C, N) and reduce M23C6 precipitate at grain boundaries, which reduces DDC in the weld metal. However, the increase of Ti content in filler metal will cause the inclusion defects. Nb replacing part of Ti in Ni-based filler metal is proposed in this work. The reduction of Ti in filler metal is to reduce the sensitivity of inclusion defects in the weld metal. Nb can form MX (M=Nb, Ti, X=C, N) precipitates to reduce the M23C6 and DDC in weld metal. The effect of Nb on the size, number, and location of MX and M23C6 in Ni-based weldment has been investigated systematically in this work. Phase diagram calculations show that Nb is an element forming high temperature MX precipitate, and its affinity with oxygen is poor and not easy to form oxide. According to the phase diagram calculations, five different filler metals are designed and made with 0, 0.4%, 0.7%, 0.85%, 1.1%Nb content. The results show that the intragranular precipitates are distributed along sub grain boundaries. The intragranular precipitate for the Nb-free weld metal is Ti(C, N), whereas the intragranular precipitate in the Nb-bearing weld metals is MX. For the increased Nb in weld metals, more MX is produced, and more C is fixed within the grain. As the Nb content increased in weld metals, the initial precipitation temperature of M23C6 decreases, the intergranular M23C6 precipitate decreases and M23C6 turns discreted at grain boundaries. As Nb content increases in weld metals, the total crack length of DDC decreases. When the Nb content is over 0.85%, little DDC is found in the weld metals. The addition of Nb can improve the tensile strength, plasticity and bending property of the weld metals。
|
Received: 29 May 2014
|
|
Fund: Supported by National Natural Science Foundation of China (No.51474203) and Key Research Program of Chinese Academy of Sciences (No.KGZD-EW-XXX-2) |
About author: null
莫文林, 男, 1986年生, 博士生 |
[1] |
Nissley N E, Lippold J C. Weld J, 2003; 82(12): 355s
|
[2] |
Torres E A, Peternella F G, Caram R, Ramírez A. In: Kannengiesser J T, Babu S S, Komizo Y, Ramirez A J eds., In-situ Studies with Photons, Neutrons and Electrons Scattering. Berlin, Heidelberg: Springer, 2010: 27
|
[3] |
Unfried J S, Torres E A, Ramirez A J. In: Böllinghaus T, Lippold J C, Cross C E eds., Hot Cracking Phenomena in Welds III. Berlin, Heidelberg: Springer, 2011: 295
|
[4] |
Wu W, Chen P Y, Jiang H. Welding, 2009; (2): 61
|
|
(吴伟, 陈佩寅, 姜胡, 焊接, 2009; (2): 61)
|
[5] |
Nishimoto K, Saida K, Okauchi H, Ohta K. Sci Technol Weld Joining, 2006; 11: 471
|
[6] |
Saida K, Nomoto Y, Okauchi H, Ogiwara H, Nishimoto K. Sci Technol Weld Joining, 2012; 17(1): 1
|
[7] |
Saida K, Taniguchi A, Okauchi H, Ogiwara H, Nishimoto K. Sci Technol Weld Joining, 2011; 16: 553
|
[8] |
Capobianco T E, Hanson M E. Auger Spectroscopy Results from Ductility Tip Cracks Opened Under Ultra-high Vacuum. Niskayuna, NY: Knolls Atomic Power Laboratory (KAPL), 2005: No. LM-05K074
|
[9] |
Lee D J, Kim Y S, Shin Y T, Jeon E C, Lee S H, Lee H J, Lee S K, Lee J H, Lee H W. Met Mater Int, 2010; 16: 813
|
[10] |
Kujanpaa V P, David S A, White C L. Weld J, 1986; 65(8): S203
|
[11] |
Ramirez A J, Lippold J C. In: Böllinghaus T, Herold H eds., Hot Cracking Phenomena in Welds. Berlin, Heidelberg: Springer, 2005: 19
|
[12] |
Ramirez A J, Garzon C M. In: Böllinghaus T, Herold H, Cross C J, Lippold J eds., Hot Cracking Phenomena in Welds II. Berlin, Heidelberg: Springer, 2008: 427
|
[13] |
Ramirez A J, Lippold J C. Mater Sci Eng, 2004; A380: 259
|
[14] |
Ramirez A J, Lippold J C. Mater Sci Eng, 2004; A380: 245
|
[15] |
Nissley N E, Lippold J C. Proc of the 7th Int Conf on Trends in Welding Research, Georgia: ASM International, 2006: 327
|
[16] |
Collins M G, Ramirez A J, Lippold J C. Weld J, 2004; 83(2): 39s
|
[17] |
Young G A, Capobianco T E, Penik M A, Morris B W, McGee J J. Weld J, 2008; 87(2): 31s
|
[18] |
Noecker F F, DuPont J N. Weld J, 2009; 88(3): 62s
|
[19] |
Mo W L, Lu S P, Li D Z, Li Y Y. J Mater Sci Technol, 2013; 29: 458
|
[20] |
Mo W L, Lu S P, Li D Z, Li Y Y. Mater Sci Eng, 2013; A582: 326
|
[21] |
Mo W, Lu S, Li D, Li Y. Metall Mater Trans, 2014; 45A: 5114
|
[22] |
Murata Y, Suga K, Yukawa N. J Mater Sci, 1986; 21: 3653
|
[23] |
Richards N L, Chaturvedi M C. Int Mater Rev, 2000; 45: 109
|
[24] |
Lee H T, Jeng S L, Yen C H, Kuo T Y. J Nucl Mater, 2004; 335: 59
|
[25] |
Tang Z Z. Master Thesis, China Academy of Machinery Science Technology, Harbin, 2007
|
|
(唐正柱. 机械科学研究总院硕士学位论文, 哈尔滨, 2007)
|
[26] |
Qin R, Duan Z, He G. Metall Mater Trans, 2013; 44A: 4661
|
[27] |
Pan N, Song B, Zhai Q J, Wen B. J Univ Sci Technol Beijing, 2010; 32: 179
|
|
(潘 宁, 宋 波, 翟启杰, 文 彬. 北京科技大学学报, 2010; 32: 179)
|
[28] |
Wu D, Lu S P, Wang X, Dong W C. Acta Metall Sin, 2014; 50: 313
|
|
(吴 栋, 陆善平, 王 鑫, 董文超. 金属学报, 2014; 50: 313)
|
[29] |
Li S, Chen B, Ma Y C, Gao M, Liu K. Acta Metall Sin, 2011; 47: 816
|
|
(李 硕, 陈 波, 马颖澈, 高 明, 刘 奎. 金属学报, 2011; 47: 816)
|
[30] |
Li H, Xia S, Zhou B X, Ni J S, Chen W J. Acta Metall Sin, 2009; 45: 195
|
|
(李 慧, 夏 爽, 周邦新, 倪建森, 陈文觉. 金属学报, 2009; 45: 195)
|
[31] |
Zheng L, Zhang M C, Dong J X. Rare Met Mater Eng, 2012; 41: 983
|
|
(郑 磊, 张麦仓, 董建新. 稀有金属材料与工程, 2012; 41: 983)
|
[32] |
Venkiteswaran P, Bright M, Taplin D. Mater Sci Eng, 1973; A11: 255
|
[33] |
Collins M G, Lippold J C. Weld J, 2003; 82(10): 288s
|
[34] |
Collins M G, Ramirez A J, Lippold J C. Weld J, 2003; 82(12): 348s
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|