Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 230-238    DOI: 10.11900/0412.1961.2014.00288
Current Issue | Archive | Adv Search |
EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL
MO Wenlin1,2, ZHANG Xu1, LU Shanping1,2(), LI Dianzhong1, LI Yiyi1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

MO Wenlin, ZHANG Xu, LU Shanping, LI Dianzhong, LI Yiyi. EFFECT OF Nb CONTENT ON MICROSTRUCTURE, WELDING DEFECTS AND MECHANICAL PROPERTIES OF NiCrFe-7 WELD METAL. Acta Metall Sin, 2015, 51(2): 230-238.

Download:  HTML  PDF(11389KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based filler metal is one of the most important filler metals in building the key components of nuclear power plants, however, ductility-dip-cracking (DDC) and inclusion defects form easily in the weldment and need to be repaired afterward. The precipitation of M23C6 (M=Cr, Fe) at grain boundaries will promote the nucleation and propagation of DDC. Adding Ti can form Ti(C, N) and reduce M23C6 precipitate at grain boundaries, which reduces DDC in the weld metal. However, the increase of Ti content in filler metal will cause the inclusion defects. Nb replacing part of Ti in Ni-based filler metal is proposed in this work. The reduction of Ti in filler metal is to reduce the sensitivity of inclusion defects in the weld metal. Nb can form MX (M=Nb, Ti, X=C, N) precipitates to reduce the M23C6 and DDC in weld metal. The effect of Nb on the size, number, and location of MX and M23C6 in Ni-based weldment has been investigated systematically in this work. Phase diagram calculations show that Nb is an element forming high temperature MX precipitate, and its affinity with oxygen is poor and not easy to form oxide. According to the phase diagram calculations, five different filler metals are designed and made with 0, 0.4%, 0.7%, 0.85%, 1.1%Nb content. The results show that the intragranular precipitates are distributed along sub grain boundaries. The intragranular precipitate for the Nb-free weld metal is Ti(C, N), whereas the intragranular precipitate in the Nb-bearing weld metals is MX. For the increased Nb in weld metals, more MX is produced, and more C is fixed within the grain. As the Nb content increased in weld metals, the initial precipitation temperature of M23C6 decreases, the intergranular M23C6 precipitate decreases and M23C6 turns discreted at grain boundaries. As Nb content increases in weld metals, the total crack length of DDC decreases. When the Nb content is over 0.85%, little DDC is found in the weld metals. The addition of Nb can improve the tensile strength, plasticity and bending property of the weld metals。

Key words:  NiCrFe-7 weld metal      ductility-dip-cracking      Nb      M23C6      MX      mechanical property     
Received:  29 May 2014     
ZTFLH:  TG422.3  
Fund: Supported by National Natural Science Foundation of China (No.51474203) and Key Research Program of Chinese Academy of Sciences (No.KGZD-EW-XXX-2)
About author:  null

莫文林, 男, 1986年生, 博士生

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00288     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/230

Fig.1  Vertical cross-section phase diagrams of NiCrFe-7 alloy at low (a) and high (b) magnification
Fig.2  Effect of Nb content on mass fraction of NbC (a) and M23C6 (b) for NiCrFe-7 alloys
Sample Nb Al Ti C Si Fe Cr Ni
0Nb <0.02 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
0.4Nb 0.30~0.50 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
0.7Nb 0.60~0.80 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
0.85Nb 0.80~0.95 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
1.1Nb 1.00~1.20 0.1~0.2 0.2~0.4 0.02~0.04 0.1~0.3 9~11.5 29.5~30.5 Bal.
Table 1  Composition design of filler wires
Fig.3  Schematic diagram of weld joint (unit: mm, the rectangle area indicates the sampling position)
Fig.4  Morphologies of 0Nb weld metal at low (a) and high (b) magnification
Fig.5  SEM images (a~d) and EDS analysis (e, f) of 0Nb (a, c, e) and 1.1Nb (b, d, f) weld metal (Figs.5e and f correspond to the EDS analysis of precipitates in the rectangle areas in Figs.5a and b, respectively)
Fig.6  Statistics of the intragranular precipitate number in NiCrFe-7 weld metals with different contents of Nb
Fig.7  SEM images (a~e) and TEM image (f) of M23C6 on the grain boundaries in 0Nb (a), 0.4Nb (b), 0.7Nb (c), 0.85Nb (d), 1.1Nb (e, f) weld metals (The insert in Fig.7f shows the corresponding SAED pattern in the circle area)
Fig.8  Ductility-dip-cracking (DDC) morphology in 0Nb weld metal
Fig.9  Statistics of the total crack length in the weld metals with different contents of Nb
Fig.10  Tensile test curves for the weld metals with different Nb contents (σ—stress, ε—strain)
Fig.11  Fractographs of 0Nb (a, a1, a2, a3), 0.4Nb (b, b1, b2, b3), 0.7Nb (c, c1, c2, c3), 0.85Nb (d, d1, d2, d3), 1.1Nb (e, e1, e2, e3) weld metal (Figs.a1~a3, b1~b3, c1~c3, d1~d3 and e1~e3 correspond to the magnified images of areas in Figs.11a, b, c, d and e, respectively)
Fig.12  Morphologies of bending surfaces for 0Nb (a), 0.4Nb (b), 0.7Nb (c), 0.85Nb (d) and 1.1Nb (e) weld metals
  
[1] Nissley N E, Lippold J C. Weld J, 2003; 82(12): 355s
[2] Torres E A, Peternella F G, Caram R, Ramírez A. In: Kannengiesser J T, Babu S S, Komizo Y, Ramirez A J eds., In-situ Studies with Photons, Neutrons and Electrons Scattering. Berlin, Heidelberg: Springer, 2010: 27
[3] Unfried J S, Torres E A, Ramirez A J. In: Böllinghaus T, Lippold J C, Cross C E eds., Hot Cracking Phenomena in Welds III. Berlin, Heidelberg: Springer, 2011: 295
[4] Wu W, Chen P Y, Jiang H. Welding, 2009; (2): 61
(吴伟, 陈佩寅, 姜胡, 焊接, 2009; (2): 61)
[5] Nishimoto K, Saida K, Okauchi H, Ohta K. Sci Technol Weld Joining, 2006; 11: 471
[6] Saida K, Nomoto Y, Okauchi H, Ogiwara H, Nishimoto K. Sci Technol Weld Joining, 2012; 17(1): 1
[7] Saida K, Taniguchi A, Okauchi H, Ogiwara H, Nishimoto K. Sci Technol Weld Joining, 2011; 16: 553
[8] Capobianco T E, Hanson M E. Auger Spectroscopy Results from Ductility Tip Cracks Opened Under Ultra-high Vacuum. Niskayuna, NY: Knolls Atomic Power Laboratory (KAPL), 2005: No. LM-05K074
[9] Lee D J, Kim Y S, Shin Y T, Jeon E C, Lee S H, Lee H J, Lee S K, Lee J H, Lee H W. Met Mater Int, 2010; 16: 813
[10] Kujanpaa V P, David S A, White C L. Weld J, 1986; 65(8): S203
[11] Ramirez A J, Lippold J C. In: Böllinghaus T, Herold H eds., Hot Cracking Phenomena in Welds. Berlin, Heidelberg: Springer, 2005: 19
[12] Ramirez A J, Garzon C M. In: Böllinghaus T, Herold H, Cross C J, Lippold J eds., Hot Cracking Phenomena in Welds II. Berlin, Heidelberg: Springer, 2008: 427
[13] Ramirez A J, Lippold J C. Mater Sci Eng, 2004; A380: 259
[14] Ramirez A J, Lippold J C. Mater Sci Eng, 2004; A380: 245
[15] Nissley N E, Lippold J C. Proc of the 7th Int Conf on Trends in Welding Research, Georgia: ASM International, 2006: 327
[16] Collins M G, Ramirez A J, Lippold J C. Weld J, 2004; 83(2): 39s
[17] Young G A, Capobianco T E, Penik M A, Morris B W, McGee J J. Weld J, 2008; 87(2): 31s
[18] Noecker F F, DuPont J N. Weld J, 2009; 88(3): 62s
[19] Mo W L, Lu S P, Li D Z, Li Y Y. J Mater Sci Technol, 2013; 29: 458
[20] Mo W L, Lu S P, Li D Z, Li Y Y. Mater Sci Eng, 2013; A582: 326
[21] Mo W, Lu S, Li D, Li Y. Metall Mater Trans, 2014; 45A: 5114
[22] Murata Y, Suga K, Yukawa N. J Mater Sci, 1986; 21: 3653
[23] Richards N L, Chaturvedi M C. Int Mater Rev, 2000; 45: 109
[24] Lee H T, Jeng S L, Yen C H, Kuo T Y. J Nucl Mater, 2004; 335: 59
[25] Tang Z Z. Master Thesis, China Academy of Machinery Science Technology, Harbin, 2007
(唐正柱. 机械科学研究总院硕士学位论文, 哈尔滨, 2007)
[26] Qin R, Duan Z, He G. Metall Mater Trans, 2013; 44A: 4661
[27] Pan N, Song B, Zhai Q J, Wen B. J Univ Sci Technol Beijing, 2010; 32: 179
(潘 宁, 宋 波, 翟启杰, 文 彬. 北京科技大学学报, 2010; 32: 179)
[28] Wu D, Lu S P, Wang X, Dong W C. Acta Metall Sin, 2014; 50: 313
(吴 栋, 陆善平, 王 鑫, 董文超. 金属学报, 2014; 50: 313)
[29] Li S, Chen B, Ma Y C, Gao M, Liu K. Acta Metall Sin, 2011; 47: 816
(李 硕, 陈 波, 马颖澈, 高 明, 刘 奎. 金属学报, 2011; 47: 816)
[30] Li H, Xia S, Zhou B X, Ni J S, Chen W J. Acta Metall Sin, 2009; 45: 195
(李 慧, 夏 爽, 周邦新, 倪建森, 陈文觉. 金属学报, 2009; 45: 195)
[31] Zheng L, Zhang M C, Dong J X. Rare Met Mater Eng, 2012; 41: 983
(郑 磊, 张麦仓, 董建新. 稀有金属材料与工程, 2012; 41: 983)
[32] Venkiteswaran P, Bright M, Taplin D. Mater Sci Eng, 1973; A11: 255
[33] Collins M G, Lippold J C. Weld J, 2003; 82(10): 288s
[34] Collins M G, Ramirez A J, Lippold J C. Weld J, 2003; 82(12): 348s
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!