Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1211-1216    
  论文 本期目录 | 过刊浏览 |
铝合金/不锈钢钨极氩弧熔-钎焊接头界面层的微观结构分析
林三宝; 宋建岭; 杨春利;马广超
哈尔滨工业大学现代焊接生产技术国家重点实验室; 哈尔滨 150001
MICROSTRUCTURE ANALYSIS OF INTERFACIAL LAYER WITH TUNGSTEN INERT GAS WELDING–BRAZING JOINT OF ALUMINUM ALLOY/STAINLESS STEEL
LIN Sanbao; SONG Jianling; YANG Chunli; MA Guangchao
State Key Laboratory of Advanced Welding Production Technology; Harbin Institute of Technology; Harbin 150001
引用本文:

林三宝 宋建岭 杨春利 马广超. 铝合金/不锈钢钨极氩弧熔-钎焊接头界面层的微观结构分析[J]. 金属学报, 2009, 45(10): 1211-1216.
. MICROSTRUCTURE ANALYSIS OF INTERFACIAL LAYER WITH TUNGSTEN INERT GAS WELDING–BRAZING JOINT OF ALUMINUM ALLOY/STAINLESS STEEL[J]. Acta Metall Sin, 2009, 45(10): 1211-1216.

全文: PDF(1624 KB)  
摘要: 

运用OM, SEM和EDS分析了铝合金/不锈钢TIG熔-钎焊接头界面层的结构特征, 并通过微压痕和SEM原位拉伸实验测试了其力学性能. 研究结果表明: 界面处
形成了厚度不均一的锯齿状金属间化合物层, 厚度为4-9 μm, 满足界面层的要求(≤10 μm); 界面反应层包括两类化合物层, 即焊缝一侧的τ5层和钢基体一侧θ+η+τ5层, 在界面处首先形成τ5相, 抑制了粗大枝晶状θ+η二元相的生长. 微压痕测试得出: τ5层平均硬度值为HV1025, θ+η+τ5层硬度值为HV835. τ5层压痕处产生裂纹, 表明τ5相是一种硬脆相. SEM原位拉伸实验 显示, 界面层起裂于θ+η相, 在外力作用下沿θ+η+τ5层迅速开裂, 界面层抗拉强度达到120 MPa.

关键词 铝合金 不锈钢 钨极氩弧熔-钎焊 界面层 金属间化合物    
Abstract

Against the background of the required weight reduction in transportation through lightweight construction, the application of hybrid structures, where aluminum alloy and steel are jointed together, has a high technical and economical potential. But jointing of material combinations of aluminum alloy and steel is problematic by fusion welding since brittle intermetallic compounds (IMCs) are formed between aluminum alloy and steel. Nowadays, tungsten inert gas (TIG) welding–brazing offers a great potential for aluminum alloy and steel jointing. In this process, the sheet and filler metal are heated or melted by TIG heat, and the joint has a dual characteristic: in aluminum alloy side it is a welding joint, while in steel side it is a brazing joint. However, in the dynamic heating process, the heating temperature changes so quickly and the reaction time between the liquid filler metal and solid steel is so short that it is more difficult to control the IMC layer’s growth, predominantly its thickness and microstructures. Most of past reports about the brazing of aluminum alloy and steel indicate Al–Fe binary IMC layers, e.g., Fe2Al5 and FeAl3, formed in the brazing joint, which are detrimental to the mechanical properties of the joint. Si additions are used to limit the growth of the brittle Al–Fe IMC layer between aluminum alloy and steel by replacing Al–Fe phases with less detrimental Al–Fe–Si phases in aluminizing and furnace brazing of aluminum alloy and steel. By now, there have been few reports of investigating the interfacial layer of TIG welding–brazing joint of aluminum alloy and stainless steel. In this paper, a butt TIG welding–brazing joint of aluminum alloy/stainless steel was formed using Al–Si eutectic filler wire with modified Noclock flux precoated on a steel surface. The microstructure characteristics of the welded seam–steel interfacial layer were analyzed by OM, SEM and EDS and its mechanical properties were measured by dynamic ultra–microhardness tester and SEM in situ tensile tester. The results show that a nonuniform and sawtooth IMC layer forms at the seam–steel interface and its thickness changes from 4 to 9 μm, less than the maximum permissible value (about 10 μm). The interfacial layer is composed of two types of IMC layers, which are τ5 IMC layer on the seam side  and θ+η+τ5 IMC layer on the steel side. τ5 phase forms preceding θ+η+τ5 due to its lower growth energy than Al–Fe phases and the primary τ5 layer inhibits the growth of rough dendritic θ+η+τ5 phases. The ultra–microhardness test results show the microhardnesses of  θτ5 and θ+η+τ5 layers reach HV1025 and HV835, respectively. Indentation cracking of τ5 layer at higher loads indicates that τ5 is a type of hard brittle phase. SEM in situ tensile test results confirm that cracking initiates from θ+η phases and then fracture rapidly generates along θ+η+τ5 layer while suffering external force. The tensile strength of IMC layer reaches 120 MPa.

Key wordsaluminum alloy    stainless steel    tungsten inert gas welding–brazing    interfacial layer    i9!a ntermetallic compound
收稿日期: 2009-02-23     
ZTFLH: 

TG457.1

 
基金资助:

国家自然科学基金项目50874033和中国机械工程学会焊接学会创新思路预研奖学金A类课题项目资助

作者简介: 林三宝, 男, 1972年生, 副教授, 博士

[1] Mathieu A, Pontevicci S, Viala J C, Cicala E, Mattei S, Grevey D. Mater Sci Eng, 2006; A435/436: 19
[2] Rathod M J, Kutsuna M. Weld Res, 2004; 83(1): 16
[3] Achar D R G, Ruge J, Sundaresan S. Aluminium, 1980; 56: 391
[4] Рябов В Р ed., trans. by Wang W H, Zhao R X. Welding and Joining of Aluminum and Its Alloy to Other Metals.Beijing: China Astronautic Publishing House, 1990: 144
(Рябов В Р著, 王文衡, 赵瑞湘译. 铝及铝合金与其它金属的焊接. 北京: 中国宇航出版社, 1990: 144)
[5] Roulin M, Luster J W, Karadenz G, Mortensen A. Weld J, 1999; 78(5): 151
[6] Song W, Saida K, Ando A, Nishimoto K. Q J Jpn Weld Soc, 2004; 22: 315
[7] Liu J B. Hot–Dip Aluminizing of Steel. Beijing: Metallurgical Industry Press, 1995: 9
(刘津邦. 钢材的热浸镀铝. 北京: 冶金工业出版社, 1995: 9)
[8] Guo J T, Sun C, Tan M H, Li H, Lai W H. Acta Metall Sin, 1990; 26: 20
(郭建亭, 孙超, 谭明晖, 李辉, 赖万慧. 金属学报, 1990; 26: 20)
[9] Gupta S P. Mater Charact, 2004; 52: 355
[10] Ma G, Xia Y M. Acta Metall Sin, 2002; 28: 914
(马钢, 夏渊明. 金属学报, 2002; 28: 914)
[11] Sierra G, Peyre P, Deschaux B F, Stuart D, Fras G. Mater Charact, 2008; 59: 1705
[12] Seifedding S, Johansson S, Svensson I L. Mater Sci Eng, 2008; A490: 385
[13] Gupta S P. Mater Charact, 2003; 49: 269
[14] Matitra T, Gupta S P. Mater Charact, 2003; 49: 293
[15] Du Y, Schuster J C, Liu Z K, Hu R X, Nash P, Sun W H, Zhang W W, Wang J, Zhang L J, Tang C Y, Zhu Z J, Liu S H, Ouyang Y F, Zhang W Q, Krendelsberger N. Intermetallics, 2008; 16: 554

[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[5] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[6] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[7] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[8] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[9] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[10] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[12] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[13] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[14] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[15] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.