Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 717-722    
  论文 本期目录 | 过刊浏览 |
Nb, Ti和Cu对Fe--13Cr--2.5Mo合金阻尼与腐蚀性能的影响
胡小锋; 李秀艳; 张波; 戎利建;李依依
(中国科学院金属研究所; 沈阳 110016)
INFLUENCES OF ADDITIONS OF Nb, Ti AND Cu ON DAMPING CAPACITY AND CORROSION RESISTANCE OF Fe--13Cr--2.5Mo ALLOY
HU Xiaofeng; LI Xiuyan; ZHANG Bo; RONG Lijian; LI Yiyi
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

胡小锋 李秀艳 张波 戎利建 李依依. Nb, Ti和Cu对Fe--13Cr--2.5Mo合金阻尼与腐蚀性能的影响[J]. 金属学报, 2009, 45(6): 717-722.
, , , , . INFLUENCES OF ADDITIONS OF Nb, Ti AND Cu ON DAMPING CAPACITY AND CORROSION RESISTANCE OF Fe--13Cr--2.5Mo ALLOY[J]. Acta Metall Sin, 2009, 45(6): 717-722.

全文: PDF(5429 KB)  
摘要: 

采用动态机械分析仪 (DMA) 和场发射扫描电镜 (FESEM) 研究了1.0\%Nb, 1.0%Ti和0.5%Cu (质量分数) 添加对Fe--13Cr--2.5Mo合金阻尼性能和腐蚀性能的影响. 结果表明: 添加Nb的合金中, 形成的大量(Nb, Mo)C相会阻碍磁畴壁的运动, 严重影响合金的阻尼性能;  当应变振幅大于3.5×10-5时, 析出相 (Nb, Mo)C与位错的交互作用会引起静滞后型位错阻尼Qdis-1, 致使在高应变振幅区合金阻尼性能明显提高; 加入Ti或Cu后合金晶界碳化物明显减少, 而晶内析出相明显增多, 导致合金的阻尼性能在低应变振幅区略有降低. 点蚀结果表明, 三种合金元素的添加都能提高合金的耐蚀性能, 其中添加1.0%Ti的合金可同时获得良好阻尼性能和耐蚀性能.

关键词 Fe--Cr--Mo合金 阻尼性能 析出相 Nb Ti 点蚀    
Abstract

Fe--Cr base high damping alloys (HDA), as the typical ferromagnetic type HDA, have been well investigated in a long history due to their merits in
low cost and superior workability like steels, and are widely applied for suppression of noise or vibration in many industrial fields. The  agnetoelastic
coupling in ferromagnetic materials is well known to be an important source of internal friction, which could produce a high damping capacity. The
damping mechanism has been mainly attributed to the stress--induced irreversible movements of magnetic domain walls. Fe--(12%---16%)Cr--(2%---4%)Mo (mass fraction) base alloys were found to possess higher damping capacity and better corrosion resistance. As well known Nb, Ti and Cu can improve corrosion resistance of stainless steel. In the present work, dynamic mechanical analyzer (DMA) and field--emission scanning electron microscope (FESEM) were used to investigate the influences of additions of 1.0%Nb, 1.0%Ti and 0.5%Cu on the damping capacity and corrosion resistance of Fe--13Cr--2.5Mo alloy. The results show that addition of 1.0%Nb causes abundant precipitations of (Nb, Mo)C, which
can obstruct the movement of domain walls, and significantly deteriorate the damping capacity at low strain amplitude. At strain amplitudes higher than 3.5×10-5, the amplitude--dependent dislocation damping Qdis-1 is generated due to dislocations interaction with (Nb, Mo)C, so the damping
capacity of Nb--containing alloy becomes higher than other alloys. Addition of Ti or Cu inhibits the precipitation of grain--boundary carbides,
while promotes the intragranular precipitations in the alloy distinctly. As a result, the damping capacity of the alloy with Ti or Cu is slightly lower than that of Fe--13Cr--2.5Mo alloy. Pitting corrosion test indicates that the  three alloying elements can all improve the corrosion resistance of Fe--13Cr--2.5Mo damping alloy. The 1.0%Ti--containing alloy possesses not only high damping capacity but also good corrosion resistance.

Key wordsFe--Cr--Mo alloy    damping capacity    precipitation    Nb    Ti    pitting corrosion
收稿日期: 2008-12-04     
ZTFLH: 

TG142.71

 
基金资助:

国家自然科学基金资助项目 50871110

作者简介: 胡小锋, 男, 1982年生, 博士生

[1] Golovin I S. J Alloy Compd, 1994; 212: 147
[2] Golovin I S. Metall Mater Trans, 1994; 25A: 111
[3] Ritchie I G, Pan Z L. Metall Trans, 1991; 22A: 607
[4] Igata N, Nishiyama K, Ota K, Yin Y, Wuttig W, Golovin I S, Humbeeck J V, San Juan J. J Alloy Compd, 2003; 355: 230
[5] Azcoitia Ch, Karimi A. J Alloy Compd, 2000; 310: 160
[6] Pulino–Sagradi D, Sagradi M, Karimi A, Martin J L. Scr Mater, 1998; 39: 131
[7] Karimi A, Giauque P H, Martin J L. J Appl Phys, 1996; 79: 1670
[8] Chen S Y, Zhang T K, Kang X F, Yang C Q, Wang X. Stainless Steel. Beijing: Atomic Energy Press, 1995: 77
(陈世英, 张廷凯, 康喜范, 杨长强, 王 熙. 不锈钢. 北京: 原子能出版社, 1995: 77)
[9] Wang W G, Zhou B X. Mater Sci Eng, 2004; A366: 45
[10] Wang W G, Zhou B X, Zheng Z M. Acta Metall Sin, 1998; 34 : 1039
(王卫国, 周邦新, 郑忠民. 金属学报, 1998; 34: 1039)

[11] Lin R R, Cao M Z, Yang R. Mater Sci Forum, 2005; 475–479: 261
[12] Lin R R, Liu F, Cao M Z, Yang R. Acta Metall Sin, 2005; 41: 958
(林仁荣, 刘 芳, 曹名洲, 杨 锐. 金属学报, 2005; 41: 958)
[13] Aksoy M, Yilmaz O, Korkut M H. Wear, 2001; 249: 639
[14] Kuzucu V, Aksoy M, Korkut M H. J Mater Process Technol, 1998; 82: 165
[15] Cao J C, Yong Q L, Liu Q Y, Sun X J. Trans Mater Heat Treat, 2006; 27(5): 51
(曹建春, 雍岐龙, 刘清友, 孙新军. 材料热处理学报, 2006; 27(5): 51)
[16] Misra R D K, Weatherly G C, Hartmann J E, Boucek A J. Mater Sci Technol, 2001; 17: 1119
[17] Cao J C, Yong Q L, Liu Q Y, Sun X J. J Mater Sci, 2007; 42: 10080
[18] Hong I T, Koo C H. Mater Sci Eng, 2005; A393: 213
[19] Smith G W, Birchak J R. J Appl Phys, 1968; 39: 2311
[20] Smith G W, Birchak J R. J Appl Phys, 1969; 40: 5174
[21] Zhou Z C, Wei J N, Han F S. Phys Status Solidi, 2002; 191A: 89
[22] Coronel V F, Beshers D N. J Appl Phys, 1988; 64: 2006
[23] Nowick A S, Berry B S. Anelastic Relaxation in Crystalline Solids. New York: Academic Press, 1972: 411
[24] Feng D. Metal Physics (Vol.III)—Metallic Mechanical Properties. Beijing: Science Press, 1999: 157
(冯 端. 金属物理学(第3卷)------金属力学性质. 北京: 科学出版社, 1999: 157)

[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[3] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[9] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[10] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[11] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[13] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[14] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[15] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.