Please wait a minute...
金属学报  2009, Vol. 45 Issue (6): 723-728    
  论文 本期目录 | 过刊浏览 |
Zn--Al--Cu基合金无钎剂钎焊泡沫铝的界面结构及力学性能
王 辉1;2; 何思渊3; 褚旭明1;2;何德坪2
1. 东南大学材料科学与工程学院; 南京 211189
2. 江苏省先进金属材料高技术研究重点实验室; 南京 210018
3. 东南大学生物科学与医学工程学院; 南京 210096
INTERFACIAL STRUCTURE AND MECHANICAL PROPERTIES OF ALUMINIUM FOAM JOINTS FLUXLESS--SOLDERED WITH Zn--Al--Cu BASE ALLOY
WANG Hui 1;2; HE Siyuan 3; CHU Xuming 1;2; HE Deping 2
1. School of Materials Science and Engineering; Southeast University; Nanjing 211189
2. Jiangsu Key Laboratory of Advanced Metallic Materials; Nanjing 210018
3. School of Biolongical Science and Medical Engineering; Southeast University; Nanjing 210096
引用本文:

王辉 何思渊 褚旭明 何德坪. Zn--Al--Cu基合金无钎剂钎焊泡沫铝的界面结构及力学性能[J]. 金属学报, 2009, 45(6): 723-728.
, , , . INTERFACIAL STRUCTURE AND MECHANICAL PROPERTIES OF ALUMINIUM FOAM JOINTS FLUXLESS--SOLDERED WITH Zn--Al--Cu BASE ALLOY[J]. Acta Metall Sin, 2009, 45(6): 723-728.

全文: PDF(1812 KB)  
摘要: 

以Zn--Al--Cu基合金为钎料, 对74.7%---91.6%不同孔隙率的泡沫铝采用无钎剂钎焊方法进行连接实验. 采用OM和SEM观察钎缝组织及界面结构, EDS测定界面元素分布, XRD分析界面物相, 通过热力学分析验证钎料中Cu和Zn与母材中Al元素的相互作用和除膜机理, 对钎焊接头试样进行拉伸和剪切性能实验, 分析孔隙率与接头试样强度之间的关系.结果表明, 该无钎剂钎焊方法在泡沫铝端 面之间形成密实结构的连续钎料层,未改变母材结构特征; 钎缝组织由Al(Zn) 固溶体、Zn(Al) 固溶体、Cu4Zn及MgMnO3组成; 连接界面主要由Al(Zn)固溶体组成, Zn,Al和Cu在界面上相互扩散而形成一定扩散梯度, 熔合良好, 钎焊接头抗拉强度与母材相当, 剪切强度略高于相同孔隙率母材的剪切强度,抗拉强度和剪切强度均随孔隙率增加而明显降低.

关键词 Zn--Al--Cu基合金 无钎剂钎焊 泡沫铝 界面结构 力学性能    
Abstract

Al foam is a structural metal in which gas bubbles are separated by thin Al cell--walls, and exhibits a unique combination of functional properties mainly derived from their cellular structure. Joining is one of important considerable secondary processes that are required for use of work pieces made from Al foam or manufacture of large size Al foam plate. Almost all of the current joining methods have some problems in corrosion resistance, fatigue tolerance, formation of weld and mechanical properties. The joint is further complicated by various cellular structure characteristics that can have a significant impact on the joining process and mechanical properties of the joints. With Zn--based alloy as filler metal, a fluxless soldering method for joining Al foams with porosities of 74.7%---91.6% is proposed. The microstructure of the soldered interfacial region, elemental distributions and phase identification were determined by OM, SEM, EDS and XRD. The tensile and shear strengths of soldered joints, and the relationship between joint bonding strength and porosity were also investigated. The results show that the joining method does not change the cellular structure near the soldered joint, but a dense soldering seam layer is formed. The soldered region consists of Al(Zn) and Zn(Al) solid solutions, Cu4Zn and MgMnO3. Major elements of the filler alloy and bases easily diffuse  into each other. The tensile strength of the joints is close to that of the Al foam base, and the shear strength of joint is higher than that of Al foam. The strengths of joints decrease with the increase of Al foam porosity.

Key wordsZn--Al--Cu base alloy    fluxless soldering    Al foam    interfacial structure    mechanical property
收稿日期: 2008-11-05     
ZTFLH: 

TG457.14

 
基金资助:

国家重点基础研究发展计划项目2006CB601201和国家自然科学基金重点项目50231010资助

作者简介: 王辉, 男, 1970年生, 副教授, 博士生

[1] Degischer H P, Kriszi B. Handbook of Cellular Metals:Production, Processing, Applications. Weinheim: Wiley–VCH Verlag GmbH, 2002: 71
[2] Ashby M F, Evans A, Fleck N A. Metals Foams: a Design Guide. Boston, MA: Butterworth Heinemann, 2000: 3
[3] Ashby M F, Lu T J. Sci China, 2003; 46B: 521
[4] Gibson L J, Ashby M F. Cellular Solids: Structure & Properties. 2nd ed., Cambridge: Cambridge University Press, 1997: 510
[5] Haferkamp H, Ostendorf A, Goede M. In: Banhart J, Ashby M F, Fleck N A eds., Cellular Metals and Metal Foaming Technology, Verlag MIT, Bremen, 2001: 479
[6] Pogibenko A G, Konkevich V Y, Arbuzova L A. Weld Int, 2001; 15: 312
[7] Haferkamp H, Bunte J, Herzog D, Ostendorf A. Sci Technol Weld Join, 2004; 9(1): 65
[8] Born C, Kuchert H, Wagner G, Eifler D. Adv Eng Mater, 2003; 5(11): 121
[9] Kitazono K, Kitajima A, Sato E, Matsushita J, Kuribayashi K. Mater Sci Eng, 2002; A327: 128
[10] Matthes K J, Lang H. In: Banhart J, Ashby M F, Fleck N A eds., Cellular Metals and Metal Foaming Technology, Verlag MIT, Bremen, 2001: 501
[11] Wang H, He D P, Chu X M, He S Y. Trans China Weld Inst, 2008: 29(10): 1
(王 辉, 何德坪, 褚旭明, 何思渊. 焊接学报, 2008; 29(10): 1)
[12] Liu L M, Tan J H, Liu X J. Mater Lett, 2007; 61: 2373
[13] LÜ S X, Yu Z H, Xu Z W, Yan J C, Yang S Q, Wu L. Trans China Weld Inst, 2001; 22(4): 73
(吕世雄, 于治水, 许志武, 闫久春, 杨士勤, 吴林. 焊接学报, 2001; 22(4): 73)
[14] Xu H B, Yan J C, Yang S Q. Chin J Mech Eng, 2005;41(7): 152
(许惠斌, 闫久春, 杨士勤. 机械工程学报, 2005; 41(7): 152)
[15] He D P,Wang H, He S Y. China Pat., CN101264538, 2008
(何德坪, 王 辉, 何思渊. 中国专利 CN101264538, 2008)
[16] Qiu X M, Yin S Q, Sun D Q, Chen Z M. Chin J Nonferous Met, 2001; 11: 1017
(邱小明, 殷世强, 孙大谦, 陈智明. 中国有色金属学报, 2001; 11: 1017)
[17] Nagasaki S, Hirabayashi M. Binary Alloy Phase–Diagrams. Tokyo: AGNE Gijutsu Center, 2001: 29, 49,146
(长崎诚三, 平林 真. 二元合金状态图集. 东京: ァグネ技术セソタ一, 2001: 29, 49, 146)
[18] Xu Z Y. Thermodynamics of the Metal Materials. Beijing: Science Press, 1981: 110
(徐祖耀. 金属材料热力学. 北京: 科学出版社, 1981: 110)
[19] Zheng M J, He D P. Chin J Mater Res, 2002; 16: 473
(郑明军, 何德坪. 材料研究学报, 2002; 16: 473)
[20] Chen C, Fleck N A, Lu T J. J Mech Phys Solids, 2001; 49:231
[21] He D P. Ultralight Porous Metals. Beijing: Science Press,2008: 196, 205
(何德坪. 超轻多孔金属. 北京: 科学出版社, 2008: 196, 205)

[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.