Please wait a minute...
金属学报  2007, Vol. 43 Issue (3): 240-248     
  论文 本期目录 | 过刊浏览 |
有外加相存在时Al-Si合金枝晶微观组织数值模拟
李斌;许庆彦;柳百成
清华大学机械工程系
Numerical simulation of dendrite microstructure for Al-Si alloy with additive phase
LI Bin; XU Qingyan; LIU Baicheng
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education of China; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
引用本文:

李斌; 许庆彦; 柳百成 . 有外加相存在时Al-Si合金枝晶微观组织数值模拟[J]. 金属学报, 2007, 43(3): 240-248 .
, , . Numerical simulation of dendrite microstructure for Al-Si alloy with additive phase[J]. Acta Metall Sin, 2007, 43(3): 240-248 .

全文: PDF(1123 KB)  
摘要: 对有外加SiC颗粒(SiCp)时的Al-7.0%Si(质量分数)合金熔体凝固过程中球状颗粒与枝晶间相互作用以及包含颗粒分布的微观组织形成过程进行了模拟研究,在热、溶质守恒的基础上考虑了溶质再分布、界面曲率以及各向异性的影响,分别对颗粒、固相、液相以及固/液界面进行处理,建立了单个及多个颗粒与枝晶相互作用的数值模型,预测了单个颗粒与凝固界面之间的吞并/推移现象,并研究了颗粒附近枝晶生长的溶质、速度场分布以及界面形状,再现了多颗粒与多枝晶相互作用直至最终偏聚到枝晶间的过程。模拟结果表明,颗粒被推移时颗粒与界面的相互作用是一个非稳态的过程,但是在凝固速率较低的条件下可以按照稳态推移的模式进行处理。模拟得到的颗粒分布及微观组织与实验结果吻合较好。
关键词 颗粒推移枝晶生长微观组织    
Abstract:The interaction between spherical particles and dendrites and the process of microstructure formation including particle distribution for Al-7.0%Si (mass fraction) alloy with additive SiC particles were simulated. Based on heat and solute conservation, solute redistribution, interface curvature and anisotropy were considered. Particle, solid, liquid as well as solid/liquid interface were treated respectively. The numerical models that describe the interaction between single particle/multiple particles and dendrites were established. The engulfment/pushing phenomena between single particle and solidification interface were predicted, and solute concentration and velocity field distribution of the growing dendrites and solid/liquid interface shape close to particle were studied. The interaction process between multiple particles and dendrites and the segregation of particles into the interdendrite regions were recurred. The simulated results show that the interaction between particles and advancing curved solid/liquid interfaces is non-steady state when the particle is pushed, while it can be treated as steady pushing mode when solidification velocity is lower than critical velocity. The simulated results of dendrite microstructure and particle distribution are in good agreement with the experimental.
Key wordsparticle pushing    dendritic growth    microstructure
收稿日期: 2006-07-18     
ZTFLH:  TG244  
[1]Jung C K,Jung S W,Nam H W,Han K S.J Compos Mater,2003;37:503
[2]Li B,Xu Q Y,Li X D,Liu B C.Acta Metall Sin,2005; 41:1303 (李斌,许庆彦,李旭东,柳百成.金属学报.2005;12:1303)
[3]Li B,Xu Q Y,Li X D,Liu B C.ISIJ Int,2006;46:241
[4]Li B,Xu Q Y,Li X D,Liu B C.Acta Metall Sin,2006; 42:875 (李斌,许庆彦,李旭东,柳百成.金属学报,2006;42:875)
[5]Nastac L.Acta Mater,1999;47:4253
[6]Zhu M F,Hong C P.ISIJ Int,2001;41:436
[7]Zhu M F,Hong C P.Metall Mater Trans,2004;35A:1555
[8]Beltran-Sanchez L,Stefanescu D M.Metall Mater Trans, 2003;34A:367
[9]Li Q,Li D Z,Qian B N.Acta Metall Sin,2004;40:634 (李强,李殿中,钱百年.金属学报.2004;40:634)
[10]Kim J K,Rohatgi P K.Acta Mater,1998;46:1115
[11]Kim J K,Rohatgi P K.Metall Mater Trans,1998;29A: 351
[12]Stefanescu D M,Juretzko F R,Dhindaw B K,Catalina A V,Sen S,Curreri P A.Metall Mater Trans,1998;29A: 1697
[13]Catalina A V,Mukherjee S,Stefanescu D M.Metall Mater Trans,2000;31A:2559
[14]Dilthey U,Pavlik V.In:Thomas B G,Beckermann C,ed.,Proc 8th Int Conf on Modeling of Casting and Welding Processes,Warrendale,PA:TMS,1998:589
[15]Sasikumar R,Sreenivisan R.Acta Mater,1994;42:2381
[16]Stefanescu D M,Dhindaw B K,Kacar S A,Moitra A. Metall Mater Trans,1988;19A:2847
[17]Sekhar J A,Trivedi R.In:Rohatgi P K,ed.,Solidifica- tion of Metal Matrix Composites,Warrendale,PA:TMS, 1990:39
[18]Kim J K,Rohatgi P K.Metall Mater Trans,2000;31A: 1295
[19]Juretzko F R,Dhindaw B K,Stefanescu D M,Sen S,Cur- ??reri P A.Metall Mater Trans,1998;29A:1691
[20]Omenyi S N,Neumann A W.J Appl Phys,1976;47:3956
[21]Garvin J W,Udaykumar H S,J Cryst Growth,2003;252: 451
[22]Wu Y,Liu H,Lavernia E J.Acta Metall Mater,1994;42: 825
[23]Shangguan D,Ahuja S,Stefanescu D M.Metall Mater Troths,1992;23A:669
[24]Feng W M.Master Degree Thesis,Tsinghua University, Beijing,2002:66 (冯伟明.清华大学硕士学位论文,北京,2002:66)
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.