Please wait a minute...
金属学报  2007, Vol. 43 Issue (6): 648-652     
  论文 本期目录 | 过刊浏览 |
铁基合金抗冲蚀性能主要控制因素的分析
王再友 朱金华 王章忠
南京工程学院材料工程学院; 南京 211167
引用本文:

王再友; 朱金华; 王章忠 . 铁基合金抗冲蚀性能主要控制因素的分析[J]. 金属学报, 2007, 43(6): 648-652 .

全文: PDF(313 KB)  
摘要: 用旋转圆盘实验机对6种奥氏体铁基合金的抗冲蚀性能与高铬铸铁和水轮机用不锈钢0Cr13Ni5Mo进行了对比研究, 通过冲蚀形貌扫描电镜观察、组织结构X射线衍射分析以及犁削抗力和局域弹性的模拟测定, 探索了硬度、犁削抗力、弹性性质和相变对抗冲蚀性能的影响. 结果表明, 冲蚀微观失效机制是泥沙犁削. 犁削抗力Wp和局域弹性he是不锈钢和Fe-Mn-Si-Cr形状记忆合金抗冲蚀性能的主要控制因素, 其冲蚀率Re与局域弹性he值和犁削抗力Wp值之间存在着相关性较高的量化表征关系式. 相变在抗冲蚀性能中作用取决于局域弹性he和犁削抗力Wp的综合效应. Fe-Mn-Si-Cr形状记忆合金0Mn25Cr7Si6Cu抗冲蚀性能因诱发的密排六方ε马氏体局域弹性he高而优于除高铬铸铁以外的所有其它实验材料.
关键词 抗冲蚀性能不锈钢Fe-Mn-Si-Cr形状记忆合    
Abstract:Erosion resistance of 6 austenitic ferrous alloys has been investigated by comparison with a high chromium iron and 0Cr13Ni5Mo stainless steel used for hydraulic turbine using a rotating disc rig. Based on SEM observations of eroded surface and X-ray diffraction examinations of microstructure as well as simulative measurements of plough-cutting resistant capacity Wp and localized surface layer elasticity he for tested alloys, an attempt has been made to discuss the influence of hardness as well as the capacity Wp, the elasticity he and phase transformation on the resistance of the alloys. The results show micro-failure mechanism is plough-cutting of sand particles in the erosion process. The capacity Wp and the elasticity he are predominant factors characterizing the resistance of the stainless steels and Fe-Mn-Si-Cr shape memory alloys, and there exists a good quantitative formula indicating correlation of the elasticity he and the capacity Wp with their erosion rate Re. The role of phase transformation in the resistance depends on the synthetic effect of the capacity Wp and the elasticity he of induced martensite, and the resistance of 0Mn25Cr7Si6Cu Fe-Mn-Si-Cr shape memory alloy is better than that of the other tested alloys except the high chromium iron because the value of he of induced hexagonal closed-packed martensite is larger.
Key wordserosion resistance    stainless steel    Fe-Mn-Si-Cr shape memory alloy    plough-cutting resistant capacity
收稿日期: 2006-08-30     
ZTFLH:  TG115  
[1]Liu W,Zheng Y G,Rao G B,Yao Z M,Ke W.Acta Metall Sin,2002;38:185 (柳伟,郑玉贵,饶光斌,姚治铭,柯伟.金属学报,2002; 38:185)
[2]Wang Y Q,Wang Z,Yang J H,Zhao L C.Scr Mater, 1996;35:1161
[3]Matsumura O,Sumi T,Tamura N,Sakao K.Mater Sci Eng,2000;A279:201
[4]Zhao T C,Sun B C,Du Y L,Fu F,Qi F J.Tribology, 1998;18:272 (赵田臣,孙宝臣,杜颜良,付芳,齐方娟.摩擦学学报,1998; 18:272)
[5]Wang Z Y,Zhu J H.Chin J Mater Res,2003;17:39 (王再友,朱金华.材料研究学报,2003;17:39)
[6]Wang Z Y,Zhu J H.Wear,2004;256:66
[7]Wang Z Y,Zhu J H.Acta Metall Sin,2003;39:273 (王再友,朱金华.金属学报,2003;39:273)
[8]Xiao J M.Metallography of Stainless Steel.Beijing:Met- allurgical Industry Press,1983:64 (肖纪美.不锈钢的金属学问题.北京,冶金工业出版社,1983: 64)
[9]Marshall P.Austenitic Stainless Steel Microstructure and Mechanical Properties.New York:McGraw-Hill,1984: 53
[10]Duan S X.In:Gu S H ed,Abrasion and Cavitation in Hy- draulic Machinery,Tianjin:Editorial board for Abrasion and Cavitation in Hydraulic Machinery of Water Conser- vancy Department and Electric Power Industry Depart- ment,2001:11 (段生孝.见:顾四行主编,水机磨蚀,天津:水利部电力工业部《水机磨蚀》编辑部,2001:11)
[11]Zhao K,Gu C Q,Shen F S,Lou B Z.Wear,1993;162-164: 811
[12]Li S Z,Dong X L.Erosion abrasion and micro-vibration wear of materials.Beijing:China Machine Press,1987: 13 (李诗卓,董祥林.材料冲蚀磨损与微动磨损.北京:机械工业出版社,1987:13)
[13]Feng Z,Ball A.Wear,1999;233-235:674
[14]Chen D A,Sarumi M,Al-Hassai S T S.Wear,1998;214: 64
[15]Magne'e A.Wear,1995;181-183:500
[16]Reshetnyak H,Kuybarsepp J.Wear,1994;177:185-193
[17]Wang Z Y,Chen H P,Xu Y G,Zhu J H.J Xi'an Jiaotong Univ,2002;36:744 (王再友,陈黄浦,徐英鸽,朱金华.西安交通大学学报,2002; 36:744)
[18]Bergeon N,Guenin G,Esnouf C.Mater Sci Eng,1998; A242:87
[19]Zhang W F,Chen Y M,Zhu J H.Metall Mater Trans, 2002;33A:3117
[20]Maxwell P C,Goldberg A,Shyne J G.Metall Trans,1974; 4:1305
[21]Hsu T Y,Xu Z Y.Mater Sci Eng,1999;A273-275:494#
[1] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[4] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 温冬辉, 姜贝贝, 王清, 李相伟, 张鹏, 张书彦. MoNb改性FeCrAl不锈钢高温组织演变和力学性能[J]. 金属学报, 2022, 58(7): 883-894.
[7] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[8] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[10] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[11] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[12] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[13] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[14] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[15] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.