Please wait a minute...
金属学报  2008, Vol. 44 Issue (9): 1105-1110     
  论文 本期目录 | 过刊浏览 |
纯钛表面电解液微弧碳氮化制备碳氮化钛厚膜
李新梅;孙文磊;憨勇;刘炳
新疆大学机械工程学院机械工程博士后科研流动站
Preparation of Ti(CxN1-x) thick films on titanium by plasma electrolytic carbonitriding
;;;
新疆大学机械工程学院
引用本文:

李新梅; 孙文磊; 憨勇; 刘炳 . 纯钛表面电解液微弧碳氮化制备碳氮化钛厚膜[J]. 金属学报, 2008, 44(9): 1105-1110 .
, , , . Preparation of Ti(CxN1-x) thick films on titanium by plasma electrolytic carbonitriding[J]. Acta Metall Sin, 2008, 44(9): 1105-1110 .

全文: PDF(2633 KB)  
摘要: 采用电解液微弧碳氮化技术(PECN), 在纯钛试样表面沉积出较厚且与基体结合牢固的多孔纳米 Ti(CxN1-x)改性层, 研究了改性层结构和组成随PECN处理时间的演变规律. 结果表明: 随放电处理时间延 长, PECN--Ti(CxN1-x)膜层厚度、膜层中C/N的原子比以及微孔直径皆增加. 处理150 min时, Ti(CxN1-x) 膜层厚度可达15 um, 且膜层是由晶粒尺寸为40-60 nm的纳米晶粒组成. 处理过程中有氢渗入, 并在Ti(CxN1-x) 层下面形成富含TiH2的过渡层. 后期的真空退火处理可以将氢除去使TiH2完全分解, 而不影响表面Ti(CxN1-x) 膜的成分和形貌
关键词 电解液微弧碳氮化TiTi(CxN1-x)膜    
Abstract:ABSTRACT Porous nanocrystalline Ti(CxN1-x) thick films which firmly bond to the substrate were obtained on commercially pure titanium by plasma electrolytic carbonitriding. The evolutions of the microstructure and phase compositions of the PECN modified layers with the treatment time were investigated. The results show that the thickness, ratios of C/N and pores sizes of the Ti(CxN1-x) films tend to increase with the discharge time. When discharge-treated for 150 minutes, the film is about 15 冚m thick and exhibits nanocrystalline characterization with grain size of 40-60 nm. The TiH2-riched layer which was induced by the permeation of hydrogen during the PECN locates beneath the Ti(CxN1-x) film, and it can be completely removed by subsequent vacuum annealing treatment while the composition and the surface morphology of the Ti(CxN1-x) film keep unchanged.
Key wordsPlasma electrolytic carbonitriding    titanium    Ti(CxN1-x) films
收稿日期: 2008-01-14     
ZTFLH:  TG174.44  
[1]Teixeira V.Thin Solid Films,2001;392:276
[2]Masaya T,Hideyuki K,Yoichi T,Naoichi Y.J Mater Synth Process,1998;6:215
[3]Kaestner P,Olfe J.Surf Coat Technol,2001;142 144:928
[4]Branko S,Damir K,Natasa B,Milan R.Surf Sci,2004; 566-568:40
[5]Fouquet V,Pichon L,Straboni A,Drouet M.Surf Coat Technol,2004;186:34
[6]Matsuura K,Kudoh M.Acta Mater,2002;50:2693
[7]Fouquet V,Pichon L,Drouet M,Straboni A.Appl Surf Sci,2004;221:248
[8]Masaya T,Yoichi T,Naoichi Y.Plasmas Ions,2000;3:33
[9]Guu Y Y,Lin J F.Surf Coat Technol,1996;85:146
[10]Posti E,Nieminen I.Mater Manuf Process,1989;4:239
[11]Yerokhin A L,Nie X,Leyland A,Matthews A,Dowey S J.Surf Coat Technol,1999;122:73
[12]Yerokhin A L,Nie X,Leyland A,Matthews A.Surf Coal Technol,2000;130:195
[13]Li X M,Han Y.Electrochem Commun,2006;8:267
[14]Han Y,Hong S H,Xu K W.Surf Coat Technol,2002;168: 249
[15]Han Y,Hong S H,Xu K W.Surf Coat Technol,2003;154: 314
[16]Kerr W R.Metall Trans,1985;16A:1077
[17]Senkov O N,Jonas J J.Metall Mater Trans,1996;27A: 1877
[18]Cui C J,Pcng Q.Rare Met Mater Eng,2003;32:1011 (崔昌军,彭乔.稀有金属材料与工程,2003;32:1011)
[19]Luppo M I,Politi A,Vigna G.Acta Mater,2005;53:4987
[20]Alefeld G,Bolke J.Hydrogen in Metals.Berlin:Springer, 1978:1
[21]Li X Y,Li Y Y.Hydrogen Damage of Austenite Alloy. Beijing:Science Press,2003:1 (李秀艳,李依依.奥氏体合金的氢损伤.北京:科学出版社,2003:1)
[22]Zhang S Q,Zhao I R.J Alloy Compd,1995;218:223
[23]Toshio F,Kazutoshi S,Hiroshi S.In:Kimura H,Lzuml O, eds.,Titanium'80 Science and Technology,Warrendale, PA:AIME,1980:2682
[24]Kohn D H,Ducheyne P.J Mater Sci,1991;26:534
[25]Arbuzov V L.J Nucl Mater,1995;233 237:442
[26]Harald S,Maziar S F.Mater Sci Eng,1998;A248:73
[27]Soltani F M,Baumann H,Ruck D,Bethge K.Nucl In- strum Methods,1997,127/128B:787
[28]Checchetto R,Bonelli M,Gratton L M,Miotello A,Sab- bioni A,Guzman L,Horino Y,Benamati G.Surf Coat Technol,1996;83:40
[29]Karlsson L,Hultman L,Johansson M P.Surf Coat Tech- nol,2000;126:1
[30]Writz G P,Brown S D,Kriven W M.Mater Manuf Pro- cess,1991;6:87
[31]Han Y,Xu K W.J Inorg Mater,2001;16:951 (憨勇,徐可为.无机材料学报,2001;16:951)
[32]Zhang C B,Kang Q,Lai Z H.Acta Mater,1996;44:1077
[33]Senkov J J.Metall Mater Trans,1996;27:18692
[1] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[4] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[5] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[8] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[11] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[12] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[13] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.