Please wait a minute...
金属学报  2024, Vol. 60 Issue (6): 802-816    DOI: 10.11900/0412.1961.2023.00045
  研究论文 本期目录 | 过刊浏览 |
铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察
申洋1,2, 谷征满1, 王聪1()
1 东北大学 冶金学院 沈阳 110819
2 南昌航空大学 江西省航空构件成形与连接重点实验室 南昌 330063
Phase Transformation Behaviors in the Heat-Affected Zones of Ferritic Heat-Resistant Steels Enabled by In Situ CSLM Observation
SHEN Yang1,2, GU Zhengman1, WANG Cong1()
1 School of Metallurgy, Northeastern University, Shenyang 110819, China
2 Jiangxi Key Laboratory of Forming and Joining Technology for Aerospace Components, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

申洋, 谷征满, 王聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察[J]. 金属学报, 2024, 60(6): 802-816.
Yang SHEN, Zhengman GU, Cong WANG. Phase Transformation Behaviors in the Heat-Affected Zones of Ferritic Heat-Resistant Steels Enabled by In Situ CSLM Observation[J]. Acta Metall Sin, 2024, 60(6): 802-816.

全文: PDF(7436 KB)   HTML
摘要: 

铁素体系耐热钢焊接时热影响区的相变行为会严重影响焊接件的室温组织,在后续严苛的条件下运行服役时会对电站安全稳定运行产生严重威胁。高温激光扫描共聚焦显微镜(CSLM)能够重现热影响区焊接热循环,实现对微观组织演变的原位观察以及相变动力学的量化分析,具有优化焊接工艺和促进耐热钢铁材料发展的潜力。本工作利用CSLM对P11、P22、P91 3种典型Cr-Mo铁素体耐热钢热影响区连续冷却过程中的相变行为进行了原位表征,研究板条组织的生长特征与相变动力学。结果表明,根据形核位置能量势垒的高低,贝氏体板条依次在原奥氏体晶界、夹杂物、晶粒内部畸变区域、先前的贝氏体板条、晶粒内部的自由表面上形核;同时,依附于原奥氏体晶界和先前贝氏体生长的贝氏体板条以及在原奥氏体晶粒内部呈放射状切变生长的马氏体板条均通过碰撞晶界或其他板条的方式停止生长,并形成交叉互锁的结构。随着温度的降低,粗晶热影响区中板条的生长速率明显高于细晶热影响区,这主要归因于过冷度的增加和原奥氏体晶粒尺寸的增大。

关键词 铁素体耐热钢热影响区固态相变原位观察高温激光扫描共聚焦显微镜    
Abstract

Fossil-fired thermal power generation has dominated China's electricity production for a long time, contributing to around 70% of the total capacity. Developing long-life ultra-supercritical thermal power units is essential for improving coal-fired power generation efficiency, reducing harmful gas emissions, and achieving national energy conservation and emission reduction targets. The assembly and manufacture of advanced heat-resistant steel grades are required to address the above demands, serving as crucial components driving the technological advancement of thermal power units. Heat-resistant steel grades P11, P22, and P91, which are Cr-Mo based ferritic, possess a range of highly attractive properties, such as excellent mechanical properties, excellent corrosion resistance, and relatively low construction costs. These steel grades are widely used in pressure vessels and pipelines focused on high-temperature applications. Fusion welding techniques are invariably necessary to weld such heat-resistant-grade steels before they are positioned in high-temperature service. However, it is worth noting that drastic solid-state phase transformations in the heat-affected zones (HAZs) during thermal welding cycles can profoundly influence the heterogeneous microstructures of welded joints, determining their final mechanical properties to a large extent. Furthermore, it seriously threatens the safe and stable operation of thermal power plants. High-temperature confocal scanning laser microscopy (CSLM) revolutionized traditional metallographic experiments, enabling real-time morphology and quantitative analysis tracking. This innovation has facilitated investigations into the kinetic phase transformation process and microstructure evolution in steels at high temperatures. In this work, the kinetics of phase transformation and microstructural evolution in the HAZs of P11, P22, and P91 ferritic heat-resistant steels during continuous cooling processes were systematically investigated using CSLM. The results revealed that bainite laths preferentially nucleate in the order of increasing difficulty in the energy barrier on austenite grain boundaries, inclusions, internal grain distortion areas, previous bainite laths, and grain interiors. Meanwhile, the growth characteristics of bainite/martensite laths were documented as the phase transformation progressed. It is revealed that bainite laths attach to prior austenite grain boundaries and the previous bainite, while martensite laths grow radially inside the prior austenite grains. Both bainite and martensite laths cease growing when they encounter grain boundaries or other laths, eventually forming an interlocking microstructure. Additionally, the growth rates of bainite/martensite laths in the HAZs of P11, P22, and P91 ferritic heat-resistant steels exhibited considerable variations as the temperature decreased. The analysis revealed that as the temperature decreased, the growth rate of laths in the coarse-grained heat-affected zone was considerably higher than that in the fine-grained heat-affected zone, which can be attributed to the increase in the degree of supercooling and prior austenite grain size.

Key wordsferritic heat-resistant steel    heat-affected zone    solid-state phase transformation    in situ observation    high-temperature confocal scanning laser microscope
收稿日期: 2023-02-07     
ZTFLH:  TG111.5  
基金资助:国家重点研发计划项目(2022YFE0123300);国家自然科学基金项目(U20A20277;52050410341;52150610494);江西省自然科学基金项目(20232BAB214054)
通讯作者: 王聪,wangc@smm.neu.edu.cn,主要从事焊接冶金研究;
Corresponding author: WANG Cong, professor, Tel: 15702435155, E-mail: wangc@smm.neu.edu.cn
作者简介: 申 洋,男,1993年生,博士
SteelCMnPSSiCrMoVNNbNiFe
P110.1300.5400.01700.00300.5901.1200.5720.0030.00490.0030.590Bal.
P220.1410.5570.00490.00150.0922.3950.9670.0140.00490.0200.157Bal.
P910.1000.4500.01700.00500.3008.1500.9500.2100.04400.0600.170Bal.
表1  P11、P22和P91铁素体耐热钢的化学成分
SteelNormalizingTempering
P11930oC, 52 min760oC, 91 min
P22930oC, 48 min750oC, 84 min
P911060oC, 30 min760oC, 60 min
表2  P11、P22和P91铁素体耐热钢的热处理工艺
图1  高温激光扫描共聚焦显微镜(CSLM)的热循环曲线
图2  P11铁素体耐热钢粗晶热影响区(CGHAZ)冷却过程中贝氏体板条长大过程的CSLM像
图3  P11铁素体耐热钢细晶热影响区(FGHAZ)冷却过程中贝氏体板条长大过程的CSLM像
图4  P22铁素体耐热钢CGHAZ冷却过程中贝氏体板条长大过程的CSLM像
图5  P22铁素体耐热钢FGHAZ冷却过程中贝氏体板条长大过程的CSLM像
图6  P91铁素体耐热钢CGHAZ冷却过程中马氏体板条长大过程的CSLM像
图7  P91铁素体耐热钢FGHAZ冷却过程中马氏体板条长大过程的CSLM像
图8  贝氏体/马氏体板条生长速率与温度的关系
图9  P11、P22和P91铁素体耐热钢CGHAZ的反极图(IPF)和局部平均取向差(KAM)图
Bainite lath (i)ΔT / oCV / (μm·s-1)
1123.79.4
2136.213.6
3158.98.4
4162.662.5
5162.99.3
6172.952.9
7179.371.2
8183.8128.2
9192.6162.4
10203.1174.9
表3  P11铁素体耐热钢中贝氏体板条的过冷度和生长速率的计算值
SteelCGHAZFGHAZ
P1189.519.0
P2261.211.2
P9139.59.4
表4  P11、P22和P91铁素体耐热钢CGHAZ和FGHAZ的原奥氏体晶粒尺寸
1 Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
1 刘正东, 陈正宗, 何西扣 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
2 He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115 [J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
2 何焕生, 余黎明, 刘晨曦 等. 新一代马氏体耐热钢G115的研究进展 [J]. 金属学报, 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
3 Liu Z D, Cheng S C, Bao H S, et al. Localization of boiler steel technology in China used for ultra super critical power plants [J]. Iron Steel, 2009, 44(6): 1
3 刘正东, 程世长, 包汉生 等. 超超临界火电机组用锅炉钢技术国产化问题 [J]. 钢铁, 2009, 44(6): 1
4 Liu Z D, Cheng S C, Tang G B, et al. The state-of-the-art of steel technology used for Chinese power plants and its future [J]. Iron Steel, 2011, 46(3): 1
4 刘正东, 程世长, 唐广波 等. 中国电站用钢技术现状和未来发展 [J]. 钢铁, 2011, 46(3): 1
5 Laha K, Chandravathi K S, Parameswaran P, et al. Type IV cracking susceptibility in weld joints of different grades of Cr-Mo ferritic steel [J]. Metall. Mater. Trans., 2009, 40A: 386
6 Hua Y, Chen J G, Yu L M, et al. Microstructure evolution and mechanical properties of dissimilar material diffusion-bonded joint for high Cr ferrite heat-resistant steel and austenitic heat-resistant steel [J]. Acta Metall. Sin., 2022, 58: 141
doi: 10.11900/0412.1961.2020.00446
6 化 雨, 陈建国, 余黎明 等. 高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能 [J]. 金属学报, 2022, 58: 141
7 Zou X D, Zhao D P, Sun J C, et al. An integrated study on the evolution of inclusions in EH36 shipbuilding steel with Mg addition: From casting to welding [J]. Metall. Mater. Trans., 2018, 49B: 481
8 Shen Y, Leng J, Wang C. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding [J]. J. Mater. Sci. Technol., 2019, 35: 1747
doi: 10.1016/j.jmst.2019.03.035
9 Wu Y W, Yuan X B, Kaldre I, et al. TiO2-assisted microstructural variations in the weld metal of EH36 shipbuilding steel subject to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2023, 54B: 50
10 Wang Y Y, Kannan R, Zhang L, et al. Microstructural analysis of the as-welded heat-affected zone of a grade 91 steel heavy section weldment [J]. Weld. J., 2017, 96: 203
11 Lee K, Lee S, Na H, et al. Ghost microstructure evolution and identification in the coarse grain heat affected zone of 2.25Cr-1Mo-V-Ti steel using tint etching [J]. Mater. Charact., 2016, 121: 31
12 Abd El-Azim M E, Ibrahim O H, El-Desoky O E. Long term creep behaviour of welded joints of P91 steel at 650oC [J]. Mater. Sci. Eng., 2013, A560: 678
13 Wang X, Wang X, Zhang Y L, et al. Microstructure and creep fracture behavior in HR3C/T92 dissimilar steel welds [J]. Mater. Sci. Eng., 2021, A799: 140128
14 Wang C, Zhang J. Fine-tuning weld metal compositions via flux optimization in submerged arc welding: an overview [J]. Acta Metall. Sin., 2021, 57: 1126
14 王 聪, 张 进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展 [J]. 金属学报, 2021, 57: 1126
15 Wang Y Y, Kannan R, Li L J. Characterization of as-welded microstructure of heat-affected zone in modified 9Cr-1Mo-V-Nb steel weldment [J]. Mater. Charact., 2016, 118: 225
16 Quidort D, Brechet Y J M. A model of isothermal and non isothermal transformation kinetics of bainite in 0.5%C steels [J]. ISIJ Int., 2002, 42: 1010
17 Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification [J]. Metall. Mater. Trans., 1986, 17B: 845
18 Mayr P, Palmer T A, Elmer J W, et al. Formation of delta ferrite in 9 wt pct Cr steel investigated by in-situ X-ray diffraction using synchrotron radiation [J]. Metall. Mater. Trans., 2010, 41A: 2462
19 Yu X H, Babu S S, Lippold J C, et al. In-situ observations of martensitic transformation in blast-resistant steel [J]. Metall. Mater. Trans., 2012, 43A: 1538
20 Mu W Z, Hedström P, Shibata H, et al. High-temperature confocal laser scanning microscopy studies of ferrite formation in inclusion-engineered steels: A review [J]. JOM, 2018, 70: 2283
21 Shen Y, Chen B, Wang C. In situ observation and growth kinetics of bainite laths in the coarse-grained heat-affected zone of 2.25Cr-1Mo heat-resistant steel during simulated welding [J]. Metall. Mater. Trans., 2021, 52A: 14
22 Xuan C J, Mu W Z. Dissolution kinetics of arbitrarily-shaped alumina in oxide melt: An integration of phase-field modelling and real-time observation study [J]. J. Alloys Compd., 2020, 834: 155168
23 Mu W Z, Shibata H, Hedström P, et al. Ferrite formation dynamics and microstructure due to inclusion engineering in low-alloy steels by Ti2O3 and TiN addition [J]. Metall. Mater. Trans., 2016, 47B: 2133
24 Zou X D, Sun J C, Matsuura H, et al. In situ observation of the nucleation and growth of ferrite laths in the heat-affected zone of EH36-Mg shipbuilding steel subjected to different heat inputs [J]. Metall. Mater. Trans., 2018, 49B: 2168
25 Ko T, Cottrell S A. The formation of bainite [J]. J. Iron Steel Inst., 1952, 172: 307
26 Terasaki H, Komizo Y I. Diffusional and displacive transformation behaviour in low carbon-low alloy steels studied by a hybrid in situ observation system [J]. Scr. Mater., 2011, 64: 29
27 Swallow E, Bhadeshia H K D H. High resolution observations of displacements caused by bainitic transformation [J]. Mater. Sci. Technol., 1996, 12: 121
28 Bhadeshia H K D H, Christian J W. Bainite in steels [J]. Metall. Mater. Trans., 1990, 21A: 767
29 Chang L C, Bhadeshia H K D H. Microstructure of lower bainite formed at large undercoolings below bainite start temperature [J]. Mater. Sci. Technol., 1996, 12: 233
30 Singh K, Kumar A, Singh A. Effect of prior austenite grain size on the morphology of nano-bainitic steels [J]. Metall. Mater. Trans., 2018, 49A: 1348
31 Ricks R A, Howell P R, Barritte G S. The nature of acicular ferrite in HSLA steel weld metals [J]. J. Mater. Sci., 1982, 17: 732
32 Mao C L, Liu C X, Yu L M, et al. Discontinuous lath martensite transformation and its relationship with annealing twin of parent austenite and cooling rate in low carbon RAFM steel [J]. Mater. Des., 2021, 197: 109252
33 Samanta S, Biswas P, Giri S, et al. Formation of bainite below the MS temperature: Kinetics and crystallography [J]. Acta Mater., 2016, 105: 390
34 Xu Z Y, Jin X J, Zhang J H, et al. Phase Transformation in Materials [M]. Beijing: Higher Education Press, 2013: 87
34 徐祖耀, 金学军, 张骥华 等. 材料相变 [M]. 北京: 高等教育出版社, 2013: 87
35 Sarizam M, Komizo Y. Effects of holding temperature on bainite transformation in Cr-Mo steel [J]. J. Mech. Eng. Sci., 2014, 7: 1103
36 Zhang S H, Hattori N, Enomoto M, et al. Ferrite nucleation at ceramic/austenite interfaces [J]. ISIJ Int., 1996, 36: 1301
37 Mao G J, Cao R, Guo X L, et al. In situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals [J]. Metall. Mater. Trans., 2017, 48A: 5783
38 Pan X Q, Zhi J J, Fan Z J, et al. Morphology and crystallography of microstructures in Mg-deoxidized offshore engineering steels after simulated welding thermal cycles [J]. Ironmak. Steelmak., 2022, 49: 541
39 Hu H J, Xu G, Nabeel M, et al. In situ study on interrupted growth behavior and crystallography of bainite [J]. Metall. Mater. Trans., 2021, 52A: 817
40 Lee S J, Park J S, Lee Y K. Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel [J]. Scr. Mater., 2008, 59: 87
41 Chen R C, Zheng Z Z, Li N, et al. In-situ investigation of phase transformation behaviors of 300M steel in continuous cooling process [J]. Mater. Charact., 2018, 144: 400
42 Luo H W, Wang X H, Liu Z B, et al. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51: 130
doi: 10.1016/j.jmst.2020.04.001
43 Furuhara T, Kawata H, Morito S, et al. Crystallography of upper bainite in Fe-Ni-C alloys [J]. Mater. Sci. Eng., 2006, A431: 228
44 Terasaki H, Komizo Y I. Correlation between the microstructural development of bainitic ferrite and the characteristics of martensite-austenite constituent [J]. Metall. Mater. Trans., 2013, 44A: 5289
45 Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17: 316
doi: 10.1017/S1431927611000055 pmid: 21418731
46 Saraf L. Kernel average misorientation confidence index correlation from FIB sliced Ni-Fe-Cr alloy surface [J]. Microsc. Microanal., 2011, 17: 424
47 Kang S, Yoon S, Lee S J. Prediction of bainite start temperature in alloy steels with different grain sizes [J]. ISIJ Int., 2014, 54: 997
48 Zheng Y F, Wu R M, Li X C, et al. Continuous cooling transformation behaviour and bainite formation kinetics of new bainitic steel [J]. Mater. Sci. Technol., 2017, 33: 454
49 Steven W, Haynes A G. The temperature of formation of martensite and bainite in low-alloy steels [J]. J. Iron Steel Inst., 1956, 183: 349
50 Andrews K W. Empirical formulae for the calculation of some transformation temperatures [J]. J. Iron Steel Inst., 1965, 203: 721
51 Hu Z W, Xu G, Hu H J, et al. In situ measured growth rates of bainite plates in an Fe-C-Mn-Si superbainitic steel [J]. Int. J. Miner. Metall. Mater., 2014, 21: 371
52 Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
53 Endo A, Chauhan H S, Nakamura Y, et al. Relationship between growth rate and undercooling in Pt-added Y1Ba2Cu3O7 - x [J]. J. Mater. Res., 1996, 11: 1114
54 Liang G F, Ali Y, You G Q, et al. Effect of cooling rate on grain refinement of cast aluminium alloys [J]. Materialia, 2018, 3: 113
55 Celada-Casero C, Sietsma J, Santofimia M J. The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
56 Hu F, Hodgson P D, Wu K M. Acceleration of the super bainite transformation through a coarse austenite grain size [J]. Mater. Lett., 2014, 122: 240
57 Xu G, Liu F, Wang L, et al. A new approach to quantitative analysis of bainitic transformation in a superbainite steel [J]. Scr. Mater., 2013, 68: 833
58 Liu D K, Yang J, Zhang Y H. In-situ observation of bainite transformation in CGHAZ of 420 MPa grade offshore engineering steel with different Mo contents [J]. ISIJ Int., 2022, 62: 714
59 Kong J H, Xie C S. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel [J]. Mater. Des., 2006, 27: 1169
60 Hu H J, Xu G, Zhou M X, et al. Effect of Mo content on microstructure and property of low-carbon bainitic steels [J]. Metals, 2016, 6: 173
[1] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[4] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[5] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[6] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[7] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[8] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[9] 刘峰, 张旭, 张玉兵. 非平衡凝固与固态相变的一体化研究[J]. 金属学报, 2018, 54(5): 701-716.
[10] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[11] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[12] 邵珩, 李岩, 南海, 许庆彦. Ti-6Al-4V合金熔模铸造过程中的固态相变微观组织演变的数值模拟[J]. 金属学报, 2017, 53(9): 1140-1152.
[13] 邓德安, 任森栋, 李索, 张彦斌. 多重热循环和约束条件对P92钢焊接残余应力的影响[J]. 金属学报, 2017, 53(11): 1532-1540.
[14] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[15] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.