|
|
多重热循环和约束条件对P92钢焊接残余应力的影响 |
邓德安1,2( ), 任森栋1, 李索1, 张彦斌1 |
1 重庆大学材料科学与工程学院 重庆 400045 2 哈尔滨工业大学先进焊接与连接国家重点实验室 哈尔滨 150001 |
|
Influence of Multi-Thermal Cycle and Constraint Condition on Residual Stress in P92 Steel Weldment |
Dean DENG1,2( ), Sendong REN1, Suo LI1, Yanbin ZHANG1 |
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China 2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
邓德安, 任森栋, 李索, 张彦斌. 多重热循环和约束条件对P92钢焊接残余应力的影响[J]. 金属学报, 2017, 53(11): 1532-1540.
Dean DENG,
Sendong REN,
Suo LI,
Yanbin ZHANG.
Influence of Multi-Thermal Cycle and Constraint Condition on Residual Stress in P92 Steel Weldment[J]. Acta Metall Sin, 2017, 53(11): 1532-1540.
[1] | Rojas D, Garcia J, Prat O, et al.9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650 ℃[J]. Mater. Sci. Eng., 2011, A528: 5164 | [2] | Spigarelli S, Quadrini E.Analysis of the creep behaviour of modified P91 (9Cr-1Mo-NbV) welds[J]. Mater. Des., 2002, 23: 547 | [3] | Hald J.Microstructure and long-term creep properties of 9-12%Cr steels[J]. Int. J. Pressure Vessels Piping, 2008, 85: 30 | [4] | Pandey C, Giri A, Mahapatra M M.Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties[J]. Mater. Sci. Eng., 2016, A664 : 58 | [5] | Vyrostková A, Homolová V, Pecha J, et al.Phase evolution in P92 and E911 weld metals during ageing[J]. Mater. Sci. Eng., 2008, A480(1-2): 289 | [6] | Buchheim G M, Osage D A, Brown R G, et al.Failure investigation of a low chrome long-seam weld in a high-temperature refinery piping system[J]. J. Pressure Vessel Technol., 1995, 117: 227 | [7] | Abson D J, Rothwell J S.Review of type IV cracking of weldments in 9-12%Cr creep strength enhanced ferritic steels[J]. Int. Mater. Rev., 2013, 58: 437 | [8] | Francis J A, Mazur W, Bhadeshia H K D H. Review type IV cracking in ferritic power plant steels[J]. Mater. Sci. Technol., 2006, 22: 1387 | [9] | Turski M, Sherry A H, Bouchard P J, et al.Residual stress driven creep cracking in type 316 stainless steel[J]. J. Neutron. Res., 2004, 12: 45 | [10] | Deng D A, Zhang Y B, Li S, et al.Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394(邓德安, 张彦斌, 李索等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394) | [11] | Francis J A, Bhadeshia H K D H, Withers P J. Welding residual stresses in ferritic power plant steels[J]. Mater. Sci. Technol., 2007, 23: 1009 | [12] | Ueda Y, Murakawa H, Ma N.Welding Deformation and Residual Stress Prevention[M]. Waltham: Elsevier, 2012: 1 | [13] | Dai H, Francis J A, Stone H J, et al.Characterizing phase transformations and their effects on ferritic weld residual stresses with X-rays and neutrons[J]. Metall. Mater. Trans., 2008, 39A: 3070 | [14] | Dixneit J, Kromm A, Hannemann A, et al.In-situ load analysis in multi-run welding using LTT filler materials[J]. Weld. Word, 2016, 60: 1159 | [15] | Dai H, Francis J A, Withers P J.Prediction of residual stress distributions for single weld beads deposited on to SA508 steel including phase transformation effects[J]. Mater. Sci. Technol., 2010, 26: 940 | [16] | Hamelin C J, Muránsky O, Smith M C, et al.Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments[J]. Acta Mater., 2014, 75: 1 | [17] | Deng D A, Murakawa H.Prediction of welding residual stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effects[J]. Comput. Mater. Sci., 2006, 37: 209 | [18] | Deng D A, Murakawa H.Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel[J]. Comput. Mater. Sci., 2013, 78: 55 | [19] | Yaghi A H, Hyde T H, Becker A A, et al.Residual stress simulation in welded sections of P91 pipes[J]. J. Mater. Process. Technol., 2005, 167: 480 | [20] | Yaghi A H, Hyde T H, Becker A A, et al. Finite element simulation of residual stresses induced by the dissimilar welding of a P92 steel pipe with weld metal IN625 [J]. Int. J. Pressure Vessels Piping, 2013, 111-112: 173 | [21] | Yaghi A H, Hyde T H, Becker A A, et al.Finite element simulation of welding residual stresses in martensitic steel pipes[J]. Mater. Res. Innov., 2013, 17: 306 | [22] | Kumar S, Awasthi R, Viswanadham C S, et al.Thermo-metallurgical and thermo-mechanical computations for laser welded joint in 9Cr-1Mo(V, Nb) ferritic/martensitic steel[J]. Mater. Des., 2014, 59: 211 | [23] | Heinze C, Pittner A, Rethmeier M, et al.Dependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses[J]. Comput. Mater. Sci., 2013, 69: 251 | [24] | Pearce S V, Linton V M. Neutron diffraction measurement of residual stress in high strength, highly restrained, thick section steel welds [J]. Physica, 2006, 385-386B: 590 | [25] | Schenk T, Richardson I M, Kraska M, et al.A study on the influence of clamping on welding distortion[J]. Comput. Mater. Sci., 2009, 45: 999 | [26] | Deng D A, Murakawa H.FEM prediction of buckling distortion induced by welding in thin plate panel structures[J]. Comput. Mater. Sci., 2008, 43: 591 | [27] | Satoh K.Transient thermal stresses of weld heat-affected zone by both-ends-fixed bar analogy[J]. Trans. Jpn. Weld. Soc., 1972, 3: 125 | [28] | Ueda Y, Murakawa H, Ma N.Welding Deformation and Residual Stress Prevention[M]. New York: Elsevier, 2012: 55 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|