Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1532-1540    DOI: 10.11900/0412.1961.2017.00007
  研究论文 本期目录 | 过刊浏览 |
多重热循环和约束条件对P92钢焊接残余应力的影响
邓德安1,2(), 任森栋1, 李索1, 张彦斌1
1 重庆大学材料科学与工程学院 重庆 400045
2 哈尔滨工业大学先进焊接与连接国家重点实验室 哈尔滨 150001
Influence of Multi-Thermal Cycle and Constraint Condition on Residual Stress in P92 Steel Weldment
Dean DENG1,2(), Sendong REN1, Suo LI1, Yanbin ZHANG1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
引用本文:

邓德安, 任森栋, 李索, 张彦斌. 多重热循环和约束条件对P92钢焊接残余应力的影响[J]. 金属学报, 2017, 53(11): 1532-1540.
Dean DENG, Sendong REN, Suo LI, Yanbin ZHANG. Influence of Multi-Thermal Cycle and Constraint Condition on Residual Stress in P92 Steel Weldment[J]. Acta Metall Sin, 2017, 53(11): 1532-1540.

全文: PDF(2765 KB)   HTML
摘要: 

系统地研究了在经受多重热循环的作用下,P92钢板中焊接残余应力的演化过程与形成机理。基于SYSWELD有限元软件,开发了计及“热-冶金-力学”耦合的计算方法,数值模拟了Satoh试验和2道重熔平板接头的应力场。在数值模拟中,详细考虑了固态相变引起的体积变化、屈服强度变化和相变塑性对残余应力形成过程的影响。同时,采用了盲孔(HD)法和X射线衍射(XRD)法测量了P92钢两道非熔化极气体保护焊(TIG)重熔的平板接头残余应力分布。计算结果和实验结果表明2者吻合较好,验证了所采用的计算方法的有效性和准确性。模拟结果表明,P92钢两道重熔平板接头的纵向残余应力呈现出清晰的拉-压相间分布形态。每道焊缝及其热影响区(HAZ)的纵向残余应力为压应力,HAZ外侧附近产生了较大的纵向拉应力。此外,还采用数值模拟方法探究了横向拘束对焊接残余应力的影响,数值模拟结果表明,横向约束可以明显降低横向残余应力,特别是焊缝端部的应力峰值。

关键词 固态相变残余应力数值模拟多重热循环Satoh试验    
Abstract

P92 steel is a typical 9%~12%Cr ferrite heat-resistant steel with good high temperature creep resistance, relatively low linear expansion coefficient and excellent corrosion resistance, so it is one of important structural materials used in supercritical thermal power plants. Fusion welding technology has been widely used to assemble the parts in thermal power plant. When the supercritical unit is in service, its parts are constantly subjected to combination of tensile, bending, twisting and impact loads under high temperature and high pressure, and many problems such as creep, fatigue and brittle fracture often occur. It has been recognized that welding residual stress has a significant impact on creep, fatigue and brittle fracture, so it is necessary to study the residual stress of P92 steel welded joints. The evolution and formation mechanism of welding residual stress in P92 steel joints under multiple thermal cycles were investigated in this work. Based on SYSWELD software, a computational approach considering the couplings among thermal, microstructure and mechanics was developed to simulate welding residual stress in P92 steel joints. Using the developed computational tool, the evolution of residual stress in Satoh test specimens was studied, and welding residual stress distribution in double-pass welded joints was calculated. In the numerical models, the influences of volume change, yield strength variation and plasticity induced by phase transformation on welding residual stress were taken into account in details. Meanwhile, the hole-drilling method and XRD method were employed to measure the residual stress distribution in the double-pass welded joints. The simulated results match the experimental measurements well, and the comparison between measurements and predictions suggests that the computational approach developed by the current study can more accurately predict welding residual stress in multi-pass P92 steel joints. The simulated results show that the longitudinal residual stress distribution around the fusion zone has a clear tension-compression pattern. Compressive longitudinal residual stresses generated in the fusion zone and heat affected-zone (HAZ) in each pass, while tensile stresses produced near the HAZs. In addition, the numerical simulation also suggests that the transverse constraint has a large influence on the transverse residual stress, while it has an insignificant effect on the longitudinal residual stress.

Key wordssolid-state phase transformation    residual stress    numerical simulation    multi-thermal cycle    Satoh test
收稿日期: 2017-01-06     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目No.51275544和重庆市研究生科研创新项目No.CYB16017
作者简介:

作者简介 邓德安,男,1968年生,教授

图1  试件尺寸、焊道分布及残余应力测量位置示意图
图2  热-冶金-力学耦合关系示意图
图3  有限元模拟流程图
图4  Satoh试验模型示意图
Case PT-1 PT-2
A 1400 600
B 1400 1400
C 600 1400
表1  Satoh试验模拟案例
图5  三维有限元模型
图6  模型约束条件示意图
图7  Satoh试验轴向应力随时间演化过程
图8  特征点位置示意图及纵向应力形成模拟结果与测量值的对比
图9  焊接残余应力的分布
图10  残余应力计算与实验结果的对比
图11  横向约束条件下焊接残余应力的分布
图12  不同约束条件下焊接残余应力模拟值对比
[1] Rojas D, Garcia J, Prat O, et al.9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650 ℃[J]. Mater. Sci. Eng., 2011, A528: 5164
[2] Spigarelli S, Quadrini E.Analysis of the creep behaviour of modified P91 (9Cr-1Mo-NbV) welds[J]. Mater. Des., 2002, 23: 547
[3] Hald J.Microstructure and long-term creep properties of 9-12%Cr steels[J]. Int. J. Pressure Vessels Piping, 2008, 85: 30
[4] Pandey C, Giri A, Mahapatra M M.Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties[J]. Mater. Sci. Eng., 2016, A664 : 58
[5] Vyrostková A, Homolová V, Pecha J, et al.Phase evolution in P92 and E911 weld metals during ageing[J]. Mater. Sci. Eng., 2008, A480(1-2): 289
[6] Buchheim G M, Osage D A, Brown R G, et al.Failure investigation of a low chrome long-seam weld in a high-temperature refinery piping system[J]. J. Pressure Vessel Technol., 1995, 117: 227
[7] Abson D J, Rothwell J S.Review of type IV cracking of weldments in 9-12%Cr creep strength enhanced ferritic steels[J]. Int. Mater. Rev., 2013, 58: 437
[8] Francis J A, Mazur W, Bhadeshia H K D H. Review type IV cracking in ferritic power plant steels[J]. Mater. Sci. Technol., 2006, 22: 1387
[9] Turski M, Sherry A H, Bouchard P J, et al.Residual stress driven creep cracking in type 316 stainless steel[J]. J. Neutron. Res., 2004, 12: 45
[10] Deng D A, Zhang Y B, Li S, et al.Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394(邓德安, 张彦斌, 李索等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394)
[11] Francis J A, Bhadeshia H K D H, Withers P J. Welding residual stresses in ferritic power plant steels[J]. Mater. Sci. Technol., 2007, 23: 1009
[12] Ueda Y, Murakawa H, Ma N.Welding Deformation and Residual Stress Prevention[M]. Waltham: Elsevier, 2012: 1
[13] Dai H, Francis J A, Stone H J, et al.Characterizing phase transformations and their effects on ferritic weld residual stresses with X-rays and neutrons[J]. Metall. Mater. Trans., 2008, 39A: 3070
[14] Dixneit J, Kromm A, Hannemann A, et al.In-situ load analysis in multi-run welding using LTT filler materials[J]. Weld. Word, 2016, 60: 1159
[15] Dai H, Francis J A, Withers P J.Prediction of residual stress distributions for single weld beads deposited on to SA508 steel including phase transformation effects[J]. Mater. Sci. Technol., 2010, 26: 940
[16] Hamelin C J, Muránsky O, Smith M C, et al.Validation of a numerical model used to predict phase distribution and residual stress in ferritic steel weldments[J]. Acta Mater., 2014, 75: 1
[17] Deng D A, Murakawa H.Prediction of welding residual stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effects[J]. Comput. Mater. Sci., 2006, 37: 209
[18] Deng D A, Murakawa H.Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel[J]. Comput. Mater. Sci., 2013, 78: 55
[19] Yaghi A H, Hyde T H, Becker A A, et al.Residual stress simulation in welded sections of P91 pipes[J]. J. Mater. Process. Technol., 2005, 167: 480
[20] Yaghi A H, Hyde T H, Becker A A, et al. Finite element simulation of residual stresses induced by the dissimilar welding of a P92 steel pipe with weld metal IN625 [J]. Int. J. Pressure Vessels Piping, 2013, 111-112: 173
[21] Yaghi A H, Hyde T H, Becker A A, et al.Finite element simulation of welding residual stresses in martensitic steel pipes[J]. Mater. Res. Innov., 2013, 17: 306
[22] Kumar S, Awasthi R, Viswanadham C S, et al.Thermo-metallurgical and thermo-mechanical computations for laser welded joint in 9Cr-1Mo(V, Nb) ferritic/martensitic steel[J]. Mater. Des., 2014, 59: 211
[23] Heinze C, Pittner A, Rethmeier M, et al.Dependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses[J]. Comput. Mater. Sci., 2013, 69: 251
[24] Pearce S V, Linton V M. Neutron diffraction measurement of residual stress in high strength, highly restrained, thick section steel welds [J]. Physica, 2006, 385-386B: 590
[25] Schenk T, Richardson I M, Kraska M, et al.A study on the influence of clamping on welding distortion[J]. Comput. Mater. Sci., 2009, 45: 999
[26] Deng D A, Murakawa H.FEM prediction of buckling distortion induced by welding in thin plate panel structures[J]. Comput. Mater. Sci., 2008, 43: 591
[27] Satoh K.Transient thermal stresses of weld heat-affected zone by both-ends-fixed bar analogy[J]. Trans. Jpn. Weld. Soc., 1972, 3: 125
[28] Ueda Y, Murakawa H, Ma N.Welding Deformation and Residual Stress Prevention[M]. New York: Elsevier, 2012: 55
[1] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[7] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[10] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[11] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[12] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[13] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[15] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.