|
|
可时效强化Mg-Sn基合金的研究进展 |
石章智1,2( ),张敏3,黄雪飞4,刘雪峰1,2,5,张文征6 |
1. 北京科技大学材料科学与工程学院 北京100083 2. 北京科技大学现代交通金属材料与加工技术北京实验室 北京100083 3. 北京交通大学机械与电子控制工程学院 北京 100044 4. 四川大学材料科学与工程学院 成都 610065 5. 北京科技大学材料先进制备技术教育部重点实验室 北京 100083 6. 清华大学材料科学与工程学院先进材料教育部重点实验室 北京 100084 |
|
Research Progress in Age-Hardenable Mg-Sn Based Alloys |
SHI Zhangzhi1,2( ),ZHANG Min3,HUANG Xuefei4,LIU Xuefeng1,2,5,ZHANG Wenzheng6 |
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2. Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China 3. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China 4. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China 5. Key Laboratory for Advanced Materials Processing of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China 6. Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
引用本文:
石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
Zhangzhi SHI,
Min ZHANG,
Xuefei HUANG,
Xuefeng LIU,
Wenzheng ZHANG.
Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. Acta Metall Sin, 2019, 55(10): 1231-1242.
[1] | Hu H, Yu A, Li N Y ,et al. Potential magnesium alloys for high temperature die cast automotive applications: A review [J]. Mater. Manuf. Processes, 2003, 18: 687 | [2] | Witte F. The history of biodegradable magnesium implants: A review [J]. Acta Biomater., 2010, 6: 1680 | [3] | Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107 | [4] | Sezer N, Evis Z, Kayhan S M, et al. Review of magnesium-based biomaterials and their applications [J]. J. Magn. Alloys, 2018, 6: 23 | [5] | Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229 | [6] | Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211 | [7] | Zhang J H, Liu S J, Wu R Z, et al. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems [J]. J. Magn. Alloys, 2018, 6: 277 | [8] | Hono K, Mendis C L, Sasaki T T, et al. Towards the development of heat-treatable high-strength wrought Mg alloys [J]. Scr. Mater., 2010, 63: 710 | [9] | Jung I H, Zhu Z J, Kim J ,et al. Recent progress on the factsage thermodynamic database for new Mg alloy development [J]. JOM, 2017, 69: 1052 | [10] | Nayeb-Hashemi A A, Clark J B. The Mg-Sn (magnesium-tin) system [J]. Bull. Alloy Phase Diag., 1984, 5: 466 | [11] | Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891 | [12] | Brauer G, Tiesler J. über dichte und gitterbau der verbindungen Mg2Pb, Mg2Sn und Mg2Ge [J]. Z.Anorg. Allg. Chem., 1950, 262: 319 | [13] | Villars P, Calvert L D. Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases [M]. Metals Park, OH: ASM International, 1997: 2347 | [14] | Liu C Q, Chen H W, Nie J F. Interphase boundary segregation of Zn in Mg-Sn-Zn alloys [J]. Scr. Mater., 2016, 123: 5 | [15] | Shi Z Z, Xu J Y, Yu J, et al. Microstructure and mechanical properties of as-cast and as-hot-rolled novel Mg-xSn-2.5Zn-2Al alloys (x=2, 4 wt%) [J]. Mater. Sci. Eng., 2018, A712: 65 | [16] | Shi Z Z, Sun Z P, Gu X F, et al. Row-matching in pyramidal Mg2Sn precipitates in Mg-Sn-Zn alloys [J]. J. Mater. Sci., 2017, 52: 7110 | [17] | Shi Z Z, Zhang W Z. Characterization and interpretation of twin related row-matching orientation relationships between Mg2Sn precipitates and the Mg matrix [J]. J. Appl. Cryst., 2015, 48: 1745 | [18] | Shi Z Z, Zhang W Z, Gu X F. Characterization and interpretation of the morphology of a Mg2Sn precipitate with irrational facets in a Mg-Sn-Mn alloy [J]. Philos. Mag., 2012, 92: 1071 | [19] | Nie X, Guan Y M, Zhao D S, et al. Transmission electron microscopy analysis of the crystallography of precipitates in Mg-Sn alloys aged at high temperatures [J]. J. Appl. Cryst., 2014, 47: 1729 | [20] | Makarov E S, Muntyanu S, Sokolov E B, et al. Study of the MgSn-Mg2Ge system [J]. Inorg. Mater., 1966, 2: 1830 | [21] | Bolshakov K A, Bulonkov N A, Rastorguev L N ,et al. The Mg3Sb2-Mg2Sn system [J]. Russ. J. Inorg. Chem., 1963, 8: 1421 | [22] | Sasaki T T, Oh-Ishi K, Ohkubo T ,et al. Effect of double aging and microalloying on the age hardening behavior of a Mg-Sn-Zn alloy [J]. Mater. Sci. Eng., 2011, A530: 1 | [23] | Zhang M, Zhang W Z, Zhu G Z. The morphology and crystallography of polygonal Mg2Sn precipitates in a Mg-Sn-Mn-Si alloy [J]. Scr. Mater., 2008, 59: 866 | [24] | Shi Z Z. Control on microstructure of Mg-Sn-based alloys and research on the precipitates crystallography in several Mg alloys [D]. Beijing: Tsinghua University, 2011 | [24] | (石章智. 镁锡基合金组织调控和几种镁合金中沉淀相晶体学的研究 [D]. 北京: 清华大学, 2011) | [25] | Shi Z Z. The crystallography of lath-shaped Mg2Sn precipitates in a Mg-Sn-Zn-Mn alloy [J]. J. Alloys Compd., 2013, 559: 158 | [26] | Elsayed F R, Sasaki T T, Mendis C L, et al. Significant enhancement of the age-hardening response in Mg-10Sn-3Al-1Zn alloy by Na microalloying [J]. Scr. Mater., 2013, 68: 797 | [27] | Shi Z Z, Dai F Z, Zhang M ,et al. Secondary coincidence site lattice model for truncated triangular β-Mg2Sn precipitates in a Mg-Sn-based alloy [J]. Metall. Mater. Trans., 2013, 44A: 2478 | [28] | Shi Z Z, Dai F Z, Zhang W Z. Crystallography of Mg2Sn precipitates with two newly observed orientation relationships in an Mg-Sn-Mn alloy [J]. Mater. Sci. Technol., 2012, 28: 411 | [29] | Shi Z Z, Zhang W Z. Newly observed prismatic Mg2Sn laths in a Mg-Sn-Zn-Mn alloy [J]. J. Mater. Sci., 2013, 48: 7551 | [30] | Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48: 1009 | [31] | Sasaki T T, Oh-ishi K, Ohkubo T ,et al. Enhanced age hardening response by the addition of Zn in Mg-Sn alloys [J]. Scr. Mater., 2006, 55: 251 | [32] | Zhang W Z, Gu X F, Dai F Z. Faceted interfaces: A key feature to quantitative understanding of transformation morphology [J]. npj Comput. Mater., 2016, 2: 16021 | [33] | Zhang W Z, Weatherly G C. On the crystallography of precipitation [J]. Prog. Mater. Sci., 2005, 50: 181 | [34] | Shi Z Z, Zhang W Z. A transmission electron microscopy investigation of crystallography of τ-Mg32(Al, Zn)49 precipitates in a Mg-Zn-Al alloy [J]. Scr. Mater., 2011, 64: 201 | [35] | Shi Z Z, Zhang W Z. Prediction of the morphology of Mg32(Al, Zn)49 precipitates in a Mg-Zn-Al alloy [J]. Intermetallics, 2013, 39: 34 | [36] | Huang X F, Shi Z Z, Zhang W Z. Transmission electron microscopy investigation and interpretation of the morphology and interfacial structure of the ε'-Mg54Ag17 precipitates in an Mg-Sn-Mn-Ag-Zn alloy [J]. J. Appl. Cryst., 2014, 47: 1676 | [37] | Li Y J, Zhang W Z, Marthinsen K. Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy [J]. Acta Mater., 2012, 60: 5963 | [38] | Radmilovic V, Kilaas R, Dahmen U ,et al. Structure and morphology of S-phase precipitates in aluminum [J]. Acta Mater., 1999, 47: 3987 | [39] | Tang Y R, Dai F Z, Gu X F, et al. Secondary dislocation structures in a Ni-TiN system from the GMS and O-lattice theory [J]. Physica, 2016, 77E: 97 | [40] | Shi Z Z, Yu J, Ji Z K ,et al. Influence of solution heat treatment on microstructure and hardness of as-cast biodegradable Zn-Mn alloys [J]. J. Mater. Sci., 2019, 54: 1728 | [41] | Zhang W Z, Sun Z P, Zhang J Y, et al. A near row matching approach to prediction of multiple precipitation crystallography of compound precipitates and its application to a Mg/Mg2Sn system [J]. J. Mater. Sci., 2017, 52: 4253 | [42] | Gu X F, Furuhara T, Zhang W Z. PTCLab: Free and open-source software for calculating phase transformation crystallography [J]. J. Appl. Cryst., 2016, 49: 1099 | [43] | Mendis C L, Bettles C J, Gibson M A ,et al. An enhanced age hardening response in Mg-Sn based alloys containing Zn [J]. Mater. Sci. Eng., 2006, A435-436: 163 | [44] | Mendis C L, Bettles C J, Gibson M A, et al. Refinement of precipitate distributions in an age-hardenable Mg-Sn alloy through microalloying [J]. Philos. Mag. Lett., 2006, 86: 443 | [45] | Behdad S, Zhou L, Henderson H B, et al. Improvement of aging kinetics and precipitate size refinement in Mg-Sn alloys by hafnium additions [J]. Mater. Sci. Eng., 2016, A651: 854 | [46] | Li W D, Huang X F, Huang W G. Effects of Ca, Ag addition on the microstructure and age-hardening behavior of a Mg-7Sn (wt%) alloy [J]. Mater. Sci. Eng., 2017, A692: 75 | [47] | Elsayed F R, Sasaki T T, Mendis C L ,et al. Compositional optimization of Mg-Sn-Al alloys for higher age hardening response [J]. Mater. Sci. Eng., 2013, A566: 22 | [48] | Huang X F, Zhang W Z, Ma Y S, et al. Enhancement of hardening and thermal resistance of Mg-Sn-based alloys by addition of Cu and Al [J]. Philos. Mag. Lett., 2014, 94: 460 | [49] | Huang X F, Zhang W Z. Improved age-hardening behavior of Mg-Sn-Mn alloy by addition of Ag and Zn [J]. Mater. Sci. Eng., 2012, A552: 211 | [50] | Shi Z Z, Zhang W Z. Designing Mg-Sn-Mn alloy based on crystallography of phase transformation [J]. Acta Metall. Sin., 2011, 47: 41 | [50] | (石章智, 张文征. 用相变晶体学指导Mg-Sn-Mn合金优化设计 [J]. 金属学报, 2011, 47: 41) | [51] | Shi Z Z, Zhang W Z. Enhanced age-hardening response and microstructure study of an Ag-modified Mg-Sn-Zn based alloy [J]. Philos. Mag. Lett., 2013, 93: 473 | [52] | Jung J G, Park S H, You B S. Effect of aging prior to extrusion on the microstructure and mechanical properties of Mg-7Sn-1Al-1Zn alloy [J]. J. Alloys Compd., 2015, 627: 324 | [53] | Yang M B, Li H L, Duan C Y ,et al. Effects of minor Ti addition on as-cast microstructure and mechanical properties of Mg-3Sn-2Sr (wt.%) magnesium alloy [J]. J. Alloys Compd., 2013, 579: 92 | [54] | Luo D, Wang H Y, Chen L ,et al. Strong strain hardening ability in an as-cast Mg-3Sn-1Zn alloy [J]. Mater. Lett., 2013, 94: 51 | [55] | Fang C F, Meng L G, Wu Y F ,et al. Effect of Gd on the microstructure and mechanical properties of Mg-Sn-Zn-Al alloy [J]. Appl. Mech. Mater., 2013, 312: 411 | [56] | Qiu K Q, Liu B, You J H, et al. Microstructure and mechanical properties of Mg-5Sn-5Zn-xCa alloys [A]. Magnesium Technology2012 C]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2012: 537 | [57] | El Mahallawy N, Ahmed Diaa A, Akdesir M ,et al. Effect of Zn addition on the microstructure and mechanical properties of cast, rolled and extruded Mg-6Sn-xZn alloys [J]. Mater. Sci. Eng., 2017, A680: 47 | [58] | Cheng W L, Tian Q W, Huo R ,et al. Improved tensile properties of Mg-8Sn-1Zn alloy induced by minor Ti addition [J]. China Found., 2016, 13: 151 | [59] | Wang Q H, Shen Y Q, Jiang B ,et al. A micro-alloyed Mg-Sn-Y alloy with high ductility at room temperature [J]. Mater. Sci. Eng., 2018, A735: 131 | [60] | She J, Pan F, Zhang J, et al. Microstructure and mechanical properties of Mg-Al-Sn extruded alloys [J]. J. Alloys Compd., 2016, 657: 893 | [61] | Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736 | [62] | Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Mater., 2018, 149: 350 | [63] | Chen Y A, Jin L, Song Y ,et al. Effect of Zn on microstructure and mechanical property of Mg-3Sn-1Al alloys [J]. Mater. Sci. Eng., 2014, A612: 96 | [64] | Tang W N, Park S S, You B S. Effect of the Zn content on the microstructure and mechanical properties of indirect-extruded Mg-5Sn-xZn alloys [J]. Mater. Des., 2011, 32: 3537 | [65] | Kim B, Baek S M, Jeong H Y ,et al. Grain refinement and reduced yield asymmetry of extruded Mg-5Sn-1Zn alloy by Al addition [J]. J. Alloys Compd., 2016, 660: 304 | [66] | She J, Pan F S, Hu H H, et al. Microstructures and mechanical properties of as-extruded Mg-5Sn-1Zn-xAl (x=1, 3 and 5) alloys [J]. Prog. Nat. Sci. Mater. Int., 2015, 25: 267 | [67] | Chang L L, Tang H, Guo J. Strengthening effect of nano and micro-sized precipitates in the hot-extruded Mg-5Sn-3Zn alloys with Ca addition [J]. J. Alloys Compd., 2017, 703: 552 | [68] | Sasaki T T, Elsayed F R, Nakata T, et al. Strong and ductile heat-treatable Mg-Sn-Zn-Al wrought alloys [J]. Acta Mater., 2015, 99: 176 | [69] | Cheng W L, Kim H S, You B S ,et al. Strength and ductility of novel Mg-8Sn-1Al-1Zn alloys extruded at different speeds [J]. Mater. Lett., 2011, 65: 1525 | [70] | Cheng W L, Tian Q W, Yu H ,et al. Strengthening mechanisms of indirect-extruded Mg-Sn based alloys at room temperature [J]. J. Magn. Alloys, 2014, 2: 299 | [71] | Cheng W L, Bai Y, Wang L F ,et al. Strengthening effect of extruded Mg-8Sn-2Zn-2Al alloy: Influence of micro and nano-size Mg2Sn precipitates [J]. Materials, 2017, 10: 822 | [72] | Park S H, You B S. Effect of homogenization temperature on the microstructure and mechanical properties of extruded Mg-7Sn-1Al-1Zn alloy [J]. J. Alloys Compd., 2015, 637: 332 | [73] | Park S H, Lee J H, Yu H ,et al. Effect of cold pre-forging on the microstructure and mechanical properties of extruded Mg-8Sn-1Al-1Zn alloy [J]. Mater. Sci. Eng., 2014, A612: 197 | [74] | Wang Y J, Peng J, Zhong L P. On the microstructure and mechanical property of as-extruded Mg-Sn-Zn alloy with Cu addition [J]. J. Alloys Compd., 2018, 744: 234 | [75] | Sasaki T T, Yamamoto K, Honma T ,et al. A high-strength Mg-Sn-Zn-Al alloy extruded at low temperature [J]. Scr. Mater., 2008, 59: 1111 | [76] | Hu T, Xiao W L, Wang F, et al. Improving tensile properties of Mg-Sn-Zn magnesium alloy sheets using pre-tension and ageing treatment [J]. J. Alloys Compd., 2018, 735: 1494 | [77] | Kim Y K, Sohn S W, Kim D H ,et al. Role of icosahedral phase in enhancing the strength of Mg-Sn-Zn-Al alloy [J]. J. Alloys Compd., 2013, 549: 46 | [78] | Lee S G, Jeon J J, Park K C ,et al. Investigation on microstructure and creep properties of as-cast and aging-treated Mg-6Sn-5Al-2Si alloy [J]. Mater. Sci. Eng., 2011, A528: 5394 | [79] | Harosh S, Miller L, Levi G ,et al. Microstructure and properties of Mg-5.6%Sn-4.4%Zn-2.1%Al alloy [J]. J. Mater. Sci., 2007, 42: 9983 | [80] | Gorny A, Bamberger M, Katsman A. High temperature phase stabilized microstructure in Mg-Zn-Sn alloys with Y and Sb additions [J]. J. Mater. Sci., 2007, 42: 10014 | [81] | Liu C Q, Liu C L, Chen H W, et al. Heat-treatable Mg-9Al-6Sn-3Zn extrusion alloy [J]. J. Mater. Sci. Technol., 2018, 34: 284 | [82] | Wang J, Han J J, Jung I H ,et al. Thermodynamic optimizations on the binary Li-Sn system and ternary Mg-Sn-Li system [J]. Calphad, 2014, 47: 100 | [83] | Ma L N, Yang Y, Wang X L ,et al. Microstructure and mechanical properties of Mg-6Li-xAl-0.8Sn alloys [J]. Mater. Sci. Technol., 2018, 34: 2078 | [84] | Fu X S, Yang Y, Hu J W ,et al. Microstructure and mechanical properties of as-cast and extruded Mg-8Li-1Al-0.5Sn alloy [J]. Mater. Sci. Eng., 2018, A709: 247 | [85] | Yarkada? G, Kumruo?lu L C, ?evik H. The effect of cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy [J]. Mater. Charact., 2018, 136: 152 | [86] | Yang M B, Qin C Y, Pan F S ,et al. Comparison of effects of cerium, yttrium and gadolinium additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn magnesium alloy [J]. J. Rare Earths, 2011, 29: 550 | [87] | Liu H M, Chen Y G, Tang Y B, et al. The microstructure and mechanical properties of permanent-mould cast Mg-5wt%Sn-(0-2.6) wt%Di alloys [J]. Mater. Sci. Eng., 2006, A437: 348 | [88] | Hort N, Huang Y, Leil T A ,et al. Microstructural investigations of the Mg-Sn-xCa system [J]. Adv. Eng. Mater., 2006, 8: 359 | [89] | Suresh K, Rao K P, Prasad Y V R K ,et al. Microstructure and mechanical properties of as-cast Mg-Sn-Ca alloys and effect of alloying elements [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3604 | [90] | Rao K P, Prasad Y V R K, Dharmendra C ,et al. Review on hot working behavior and strength of calcium-containing magnesium alloys [J]. Adv. Eng. Mater., 2018, 20: 1701102 | [91] | Jiang Y, Chen Y A, Liu H ,et al. Microstructure evolution of as-cast Mg-5Sn alloy with Ba addition [J]. J. Alloys Compd., 2016, 657: 68 | [92] | Pan F S, Yang M B. Preliminary investigations about effects of Zr, Sc and Ce additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn (wt.%) magnesium alloy [J]. Mater. Sci. Eng., 2011, A528: 4973 | [93] | Kim Y K, Kim D H, Kim W T, et al. Precipitation of D019 type metastable phase in Mg-Sn alloy [J]. Mater. Lett., 2013, 113: 50 | [94] | Gao X, He S M, Zeng X Q ,et al. Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250 ℃ [J]. Mater. Sci. Eng., 2006, A431: 322 | [95] | Liu C Q, Chen H W, Liu H ,et al. Metastable precipitate phases in Mg-9.8 wt%Sn alloy [J]. Acta Mater., 2018, 144: 590 | [96] | Cannon P, Conlin E T. Magnesium compounds: New dense phases [J]. Science, 1964, 145: 487 | [97] | Fu H, Guo J X, Wu W S ,et al. High pressure aging synthesis of a hexagonal Mg2Sn strengthening precipitate in Mg-Sn alloys [J]. Mater. Lett., 2015, 157: 172 | [98] | Zhao C Y, Pan F S, Zhao S ,et al. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification [J]. Mater. Sci. Eng., 2015, C54: 245 | [99] | Kubásek J, Vojtěch D, Lipov J ,et al. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys [J]. Mater. Sci. Eng., 2013, C33: 2421 | [100] | Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|