Please wait a minute...
金属学报  2017, Vol. 53 Issue (9): 1140-1152    DOI: 10.11900/0412.1961.2016.00579
  本期目录 | 过刊浏览 |
Ti-6Al-4V合金熔模铸造过程中的固态相变微观组织演变的数值模拟
邵珩1, 李岩2, 南海2, 许庆彦1()
1 清华大学材料学院先进成形制造教育部重点实验室 北京 100084
2 北京航空材料研究院 北京 100095
Numerical Simulation of Microstructure Evolution During the Solid Phase Transformation of Ti-6Al-4V Alloy in Investment Casting
Heng SHAO1, Yan LI2, Hai NAN2, Qingyan XU1()
1 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Beijing Institute of Aeronautical Materials, Beijing 100095, China。
全文: PDF(8603 KB)   HTML
摘要: 

针对Ti-6Al-4V合金熔模铸造固态相变过程中的微观组织演变,对α相片层的生长,采用了多组元Zener-Hillert模型计算片层边缘生长速率,根据溶质守恒,建立片层宽面的生长速率多元溶质扩散生长模型,模拟得到了多个α相集束竞争生长的微观组织。模拟结果表明,Ti-6Al-4V合金熔模铸造固态相变过程中,α相片层边缘生长受杂质元素影响较小,而在宽面上,杂质元素含量引起的过冷度占总过冷度的比例约为0.45;Ti-6Al-4V合金熔模铸造固态相变潜热约为70 kJ/kg,与JMatPro软件中的数据吻合较好。模拟得到的组织形态结果与金相组织吻合较好,模拟得到的生长速率与实验估测的速率相当。

关键词 钛合金固态相变数值模拟    
Abstract

Investment casting is widely used in producting complex thin-wall titanium alloy components. In this process, the βα phase transformation decides the final microstructures of these components. However most of present studies on phase transformation of titanium alloys focus on the microstructure evolution in heat treatment process or after deformation rather than in casting process now. It is a main reason only this work aims at the solid phase transformation of Ti-6Al-4V alloy in investment casting. In this work, the growth model of edge of α phase plates based on multi component Zener-Hiller model, and the growth model of broad face of α phase plates based on diffusion and conservation of multi components were established. The growth competition of different colonies, which consist of α phase plates in same orientation, was simulated and the microstructures and their evolution with temperature were obtained. The comparison between simulated microstructures and their evolution with temperature and experimental data indicated that the proportion of undercooling degree caused by impurities in the alloy is about 45% of the total undercooling degree in broad face of α phase plates and a much smaller portion in edge of α phase plates. The comparison also showed that the enthalpy change of solid phase transformation of titanium alloy is about 70 kJ/kg. The simulated and experimental morphologies look like similar and the simulated growth rate is also in good accordance with experiment inferred growth rate.

Key wordstitanium alloy    solid phase transformation    numerical simulation
收稿日期: 2016-12-28     
ZTFLH:  TG249.5  
基金资助:中欧航空科技合作项目,欧盟地平线2020——研究与创新框架方案, 国家重点基础研究发展计划项目No.2011CB706801, 国家自然科学基金项目Nos.51171089和51374137,国家重大科技计划项目No.2012ZX04012011及国家高技术研究发展计划项目 No.2007AA04Z141
作者简介:

作者简介 邵珩,男,1989年生,博士

引用本文:

邵珩, 李岩, 南海, 许庆彦. Ti-6Al-4V合金熔模铸造过程中的固态相变微观组织演变的数值模拟[J]. 金属学报, 2017, 53(9): 1140-1152.
Heng SHAO, Yan LI, Hai NAN, Qingyan XU. Numerical Simulation of Microstructure Evolution During the Solid Phase Transformation of Ti-6Al-4V Alloy in Investment Casting. Acta Metall Sin, 2017, 53(9): 1140-1152.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00579      或      https://www.ams.org.cn/CN/Y2017/V53/I9/1140

图1  Ti64合金熔模铸造过程温度与微观组织演化示意图
图2  片层边缘扩散长大示意图
图3  宽面台阶长大示意图
图4  α片层生长捕获规则示意图
图5  JMatPro软件给出的Ti-6Al-4V与Ti-6Al-4V-0.18Fe-0.18O-0.02C-0.01N中α /β相含量随温度的变化
图6  Ti64合金固态相变过程数值模拟流程图
图7  相同取向片层竞争生长模拟结果
图8  α相片层生长方向与基底具有不同夹角时的生长模拟结果
图9  Ti64铸件熔模铸造过程温度和冷却速率曲线
图10  Ti64铸件截面的OM像与宏观组织
图11  宽面上杂质元素含量引起的过冷度占总过冷度的比例k不同时α相集束生长模拟结果
图12  耦合模拟计算域示意图
图13  不同的相变潜热(ΔH)和k下模拟得到的计算域冷却速率比较
图14  多集束模拟生长Al浓度分布
图15  多集束模拟生长截面Al浓度分布
图16  熔模铸造Ti64合金OM像
[1] Cui C X, Hu B M, Zhao L C, et al.Titanium alloy production technology, market prospects and industry development[J]. Mater. Des., 2011, 32: 1684
[2] Li Y H, Sun Z Q, Li X L, et al.Recent progress of biomedical porous titanium for bone implants[J]. J. Optoelect. Adv. Mater., 2014, 16: 513
[3] Zhou L.Review of titanium industry progress in America, Japan and China[J]. Rare Met. Mater. Eng., 2003, 32: 577(周廉. 美国、日本和中国钛工业发展评述[J]. 稀有金属材料与工程, 2003, 32: 577)
[4] Williams J C, Starke E A Jr. Progress in structural materials for aerospace systems[J]. Acta Mater., 2003, 51: 5775
[5] Filip R, Kubiak K, Ziaja W, et al.The effect of microstructure on the mechanical properties of two-phase titanium alloys[J]. J. Mater. Process. Technol., 2003, 133: 84
[6] Jovanovi? M T, Tadi? S, Zec S, et al.The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti-6Al-4V alloy[J]. Mater. Des., 2006, 27: 192
[7] Sui Y W, Li B S, Liu A H, et al.Microstructures and hardness of Ti-6Al-4V alloy staging castings under centrifugal field[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 291
[8] Ahmed T, Rack H J.Phase transformations during cooling in α+β titanium alloys[J]. Mater. Sci. Eng., 1998, A243: 206
[9] Lütjering G.Influence of processing on microstructure and mecha-nical properties of (α+β) titanium alloys[J]. Mater. Sci. Eng., 1998, A243: 32
[10] Bhattacharyya D, Viswanathan G B, Denkenberger R, et al.The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy[J]. Acta Mater., 2003, 51: 4679
[11] Bhattacharyya D, Viswanathan G B, Fraser H L.Crystallographic and morphological relationships between β phase and the Widmanst?tten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy[J]. Acta Mater., 2007, 55: 6765
[12] Whittaker R, Fox K, Walker A.Texture variations in titanium alloys for aeroengine applications[J]. Mater. Sci. Technol., 2010, 26: 676
[13] He D, Zhu J C, Zaefferer S, et al.Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during βα phase transformation in a near α titanium alloy[J]. Mater. Sci. Eng., 2012, A549: 20
[14] Katzarov I, Malinov S, Sha W.Finite element modeling of the morphology of β to α phase transformation in Ti-6Al-4V alloy[J]. Metall. Mater. Trans., 2002, 33A: 1027
[15] Yang M, Wang G, Teng C Y, et al.3D phase field simulation of effect of interfacial energy anisotropy on sideplate growth in Ti-6Al-4V[J]. Acta Metall. Sin., 2012, 48: 148(杨梅, 王刚, 滕春禹等. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟[J]. 金属学报, 2012, 48: 148)
[16] Shi R, Zhou N, Niezgoda S R, et al.Microstructure and transformation texture evolution during α precipitation in polycrystalline α/β titanium alloys——A simulation study[J]. Acta Mater., 2015, 94: 224
[17] Song K J, Wei Y H, Dong Z B, et al.Numerical simulation of β to α phase transformation in heat affected zone during welding of TA15 alloy[J]. Comp. Mater. Sci., 2013, 72: 93
[18] Jacot A, Rappaz M.A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys[J]. Acta Mater., 2002, 50: 1909
[19] Shi R, Ma N, Wang Y.Predicting equilibrium shape of precipitates as function of coherency state[J]. Acta Mater., 2012, 60: 4172
[20] Carman A, Zhang L C, Ivasishin O M, et al.Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloy[J]. Mater. Sci. Eng., 2011, A528: 1686
[21] Lutjering G, Williams J C.Titanium[M]. Berlin: Springer-Verlag, 2003: 44
[22] Hillert M, H?glund L, ?gren J.Diffusion-controlled lengthening of Widmanst?tten plates[J]. Acta Mater., 2003, 51: 2089
[23] Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253
[24] Shao H, Li Y, Nan H, et al.Research on the interfacial heat transfer coeffecient between casting and ceramic shell in investment casting process of Ti6Al4V alloy[J]. Acta Metall. Sin., 2015, 51: 976(邵珩, 李岩, 南海等. 熔模铸造条件下Ti6Al4V合金铸件与陶瓷型壳间界面换热系数研究[J]. 金属学报, 2015, 51: 976)
[25] Liu Z, Welsch G.Literature survey on diffusivities of oxygen, aluminum, and vanadium in alpha titanium, beta titanium, and in rutile[J]. Metall. Trans., 1988, 19A: 1121
[26] Mills K C.Recommended Values of Thermophysical Properties for Selected Commercial Alloys [M]. Cambridge: Woodhead Publishing Ltd., 2002: 211
[1] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[2] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[3] 柯林达,殷杰,朱海红,彭刚勇,孙京丽,陈昌棚,王国庆,李中权,曾晓雁. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报, 2020, 56(3): 374-384.
[4] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[5] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[6] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[7] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[8] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[9] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[10] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[11] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[12] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[13] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] 田银宝, 申俊琦, 胡绳荪, 勾健. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 2019, 55(11): 1407-1416.
[15] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.