Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 273-286    DOI: 10.11900/0412.1961.2022.00542
  综述 本期目录 | 过刊浏览 |
超声冲击对增材制造组织改善及强化机理影响的研究进展
孙徕博1,2, 黄陆军2, 黄瑞生1(), 徐锴1, 武鹏博1, 龙伟民3, 姜风春4, 方乃文1
1中国机械总院集团哈尔滨焊接研究所有限公司 哈尔滨 150028
2哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001
3郑州机械研究所有限公司 新型钎焊材料与技术国家重点实验室 郑州 450001
4哈尔滨工程大学 烟台研究院 烟台 264000
Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing
SUN Laibo1,2, HUANG Lujun2, HUANG Ruisheng1(), XU Kai1, WU Pengbo1, LONG Weimin3, JIANG Fengchun4, FANG Naiwen1
1Harbin Welding Institute Limited Company, China Academy of Machinery Science and Tecchnology Group, Harbin 150028, China
2School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3State Key Laboratory of New Brazing Materials and Technology, Zhengzhou Research Institute of Mechanical Engineering Co. Ltd., Zhengzhou 450001, China
4Yantai Research Institute of Harbin Engineering University, Yantai 264000, China
引用本文:

孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
Laibo SUN, Lujun HUANG, Ruisheng HUANG, Kai XU, Pengbo WU, Weimin LONG, Fengchun JIANG, Naiwen FANG. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. Acta Metall Sin, 2024, 60(3): 273-286.

全文: PDF(4515 KB)   HTML
摘要: 

增材制造作为一种快速发展的先进技术已在制造业领域得到广泛应用,但在金属制件增材制造过程中存在的晶粒粗大、组织方向性明显等问题制约了该技术的发展。超声冲击处理作为一种强化手段,因其能够有效改善增材制造金属制件应力状态、细化组织并提高其综合性能等特点而得到认可。本文从超声冲击在金属增材制造过程中对组织的作用机制和强化机理出发,总结了基于表面塑性变形实现增材制造强化的理论观点及局限性,阐述了超声冲击和增材制造复合作用下的组织细化机理和柱状晶向等轴晶转变机制,最后提出了超声冲击辅助金属增材制造强化理论建立过程中仍需进行深入研究的问题及建议。

关键词 超声冲击处理增材制造强化机制组织转变机理    
Abstract

Additive manufacturing (AM) is a rapidly developing technology that has found widespread use in the manufacturing industry. However, the application with high performance and stability requirements is constrained by its coarse microstructure, which exhibits obvious directionality during the deposition of metal parts. Ultrasonic impact treatment (UIT) has been recognized as an effective strengthening method that can improve the stress state, refine the microstructure, and enhance the overall performance of metal parts fabricated via AM. This paper summarizes the theoretical views and limitations of UIT strengthening regarding surface plastic deformation. Additionally, it elaborates on the mechanism of microstructure refinement and the transformation of columnar dendrites to equiaxed dendrites, influenced by the combined effect of UIT and AM. Finally, the paper outlines the problems and suggestions related to strengthening theory that require further investigation in the process of UIT-assisted AM.

Key wordsultrasonic impact treatment    additive manufacturing    strengthening mechanism    microstructure transformation mechanism
收稿日期: 2022-10-25     
ZTFLH:  TG444  
基金资助:国家重点研发计划项目(2021YFB3401100);黑龙江省头雁行动计划-能源装备先进焊接技术创新团队项目(201916120);新型钎焊材料与技术国家重点实验室开放课题项目(SKLABFMT202005);中国机械科学研究总院集团有限公司高端人才项目(202210109)
通讯作者: 黄瑞生,huangrs8@163.com,主要从事激光焊、特种弧焊以及先进增材制造技术研究及工程应用
Corresponding author: HUANG Ruisheng, professor, Tel: 13936168723, E-mail: huangrs8@163.com
作者简介: 孙徕博,男,1984年生,高级工程师,博士
图1  超声冲击处理(UIT)工作原理[36]及过程能量转换[37]示意图
图2  超声冲击作用下SMA490BW钢组织演变及其示意图[41]
图3  Ti-6Al-4V合金超声处理前后的宏观组织及其示意图,基于表面塑性变形的超声冲击强化增材制造作用原理示意图[50]
图4  Inconel 718合金不同处理条件下激光金属沉积(LMD)制件组织EBSD对比结果[56]
图5  Inconel 718合金超声冲击前后LMD层间组织对比图[66]
图6  Inconel 718合金超声冲击前后在不同固溶温度下的组织变化对比[66]
图7  低碳钢超声冲击前后典型区域晶界分布对比[76]
图8  超声冲击强化增材制造过程中组织演变示意图[76]
1 Jiang F C, Sun L B, Huang R S, et al. Effects of heat input on morphology of thin-wall components fabricated by wire and arc additive manufacturing [J]. Adv. Eng. Mater., 2021, 23: 2001443
doi: 10.1002/adem.v23.4
2 Truby R L, Lewis J A. Printing soft matter in three dimensions [J]. Nature, 2016, 540: 371
doi: 10.1038/nature21003
3 Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
3 孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
4 Tian Y B, Shen J Q, Hu S S, et al. Study of the reaction layer of Ti and Al dissimilar alloys by wire and arc additive manufacturing [J]. Acta Metall. Sin., 2019, 55: 1407
4 田银宝, 申俊琦, 胡绳荪 等. 丝材+电弧增材制造钛/铝异种金属反应层的研究 [J]. 金属学报, 2019, 55: 1407
doi: 10.11900/0412.1961.2019.00022
5 Vafadar A, Guzzomi F, Rassau A, et al. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges [J]. Appl. Sci., 2021, 11: 1213
doi: 10.3390/app11031213
6 Paolini A, Kollmannsberger S, Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods [J]. Addit. Manuf., 2019, 30: 100894
7 Emelogu A, Marufuzzaman M, Thompson S M, et al. Additive manufacturing of biomedical implants: A feasibility assessment via supply-chain cost analysis [J]. Addit. Manuf., 2016, 11: 97
8 Oliveira J P, LaLonde A, Ma J. Processing parameters in laser powder bed fusion metal additive manufacturing [J]. Mater. Des., 2020, 193: 108762
doi: 10.1016/j.matdes.2020.108762
9 Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
9 谭超林, 周克崧, 马文有 等. 激光增材制造成型马氏体时效钢研究进展 [J]. 金属学报, 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
10 Sun X J, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
10 孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
11 Fang N W, Wang X X, Xu K, et al. Effect of shielding gas on arc characteristics and microstructure and properties of laser-arc hybrid welding of low nickel stainless steel [J]. Rare Met. Mater. Eng., 2022, 51: 3089
11 方乃文, 王星星, 徐 锴 等. 保护气体对低镍不锈钢激光-电弧复合焊电弧特性及组织性能影响 [J]. 稀有金属材料与工程, 2022, 51: 3089
12 Lu Z Y, Tian H Y, Chen S J, et al. Review on precision control technologies of additive manufacturing hybrid subtractive process [J]. Acta Metall. Sin., 2020, 56: 83
doi: 10.11900/0412.1961.2019.00053
12 卢振洋, 田宏宇, 陈树君 等. 电弧增减材复合制造精度控制研究进展 [J]. 金属学报, 2020, 56: 83
doi: 10.11900/0412.1961.2019.00053
13 Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2021, 57: 1246
13 马健凯, 李俊杰, 王志军 等. 锻造-增材复合制造Ti-6Al-4V合金结合区显微组织及力学性能 [J]. 金属学报, 2021, 57: 1246
doi: 10.11900/0412.1961.2020.00416
14 Li Z X, Liu C M, Xu T Q, et al. Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy [J]. Mater. Sci. Eng., 2019, A742: 287
15 Sun L B, Jiang F C, Huang R S, et al. Anisotropic mechanical properties and deformation behavior of low-carbon high-strength steel component fabricated by wire and arc additive manufacturing [J]. Mater. Sci. Eng., 2020, A787: 139514
16 Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling [J]. J. Mater. Process. Technol., 2013, 213: 1782
doi: 10.1016/j.jmatprotec.2013.04.012
17 Chi J X, Cai Z Y, Wan Z D, et al. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties [J]. Surf. Coat. Technol., 2020, 396: 125908
doi: 10.1016/j.surfcoat.2020.125908
18 Hönnige J R, Davis A E, Ho A, et al. The effectiveness of grain refinement by machine hammer peening in high deposition rate wire-arc AM Ti-6Al-4V [J]. Metall. Mater. Trans., 2020, 51A: 3692
19 Ma Q S, Chen H Z, Ren N N, et al. Effects of ultrasonic vibration on microstructure, mechanical properties, and fracture mode of Inconel 625 parts fabricated by cold metal transfer arc additive manufacturing [J]. J. Mater. Eng. Perform., 2021, 30: 6808
doi: 10.1007/s11665-021-06023-5
20 Diao M X, Guo C H, Sun Q F, et al. Improving mechanical properties of austenitic stainless steel by the grain refinement in wire and arc additive manufacturing assisted with ultrasonic impact treatment [J]. Mater. Sci. Eng., 2022, A857: 144044
21 Zhou X M, Mao X Y, Su G Q, et al. The deformation behavior of the gradient nanostructured microstructure of low-carbon steel under the tensile stress [J]. Mater. Sci. Eng., 2022, A844: 143209
22 Zhou C P, Jiang F C, Xu D, et al. A calculation model to predict the impact stress field and depth of plastic deformation zone of additive manufactured parts in the process of ultrasonic impact treatment [J]. J. Mater. Process. Technol., 2020, 280: 116599
doi: 10.1016/j.jmatprotec.2020.116599
23 Lv J M, Alexandrov I V, Luo K Y, et al. Microstructural evolution and anisotropic regulation in tensile property of cold metal transfer additive manufactured Ti6Al4V alloys via ultrasonic impact treatment [J]. Mater. Sci. Eng., 2022, A859: 144177
24 Cui Z Q, Mi Y J, Qiu D, et al. Microstructure and mechanical properties of additively manufactured CrMnFeCoNi high-entropy alloys after ultrasonic surface rolling process [J]. J. Alloys Compd., 2021, 887: 161393
doi: 10.1016/j.jallcom.2021.161393
25 Zhou C P, Wang J D, Guo C H, et al. Numerical study of the ultrasonic impact on additive manufactured parts [J]. Int. J. Mech. Sci., 2021, 197: 106334
doi: 10.1016/j.ijmecsci.2021.106334
26 Zhang M X, Liu C M, Shi X Z, et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting [J]. Appl. Sci., 2016, 6: 304
doi: 10.3390/app6110304
27 Xing X D, Duan X M, Jiang T T, et al. Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting [J]. Metals, 2019, 9: 103
doi: 10.3390/met9010103
28 Li Y P, Wang C R, Du X D, et al. Research status and quality improvement of wire arc additive manufacturing of metals [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 969
doi: 10.1016/S1003-6326(23)66160-6
29 Walker P, Malz S, Trudel E, et al. Effects of ultrasonic impact treatment on the stress-controlled fatigue performance of additively manufactured DMLS Ti-6Al-4V alloy [J]. Appl. Sci., 2019, 9: 4787
doi: 10.3390/app9224787
30 Lesyk D A, Martinez S, Mordyuk B N, et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress [J]. Surf. Coat. Technol., 2020, 381: 125136
doi: 10.1016/j.surfcoat.2019.125136
31 Wang Y C, Roy S, Choi H, et al. Cracking suppression in additive manufacturing of hard-to-weld nickel-based superalloy through layer-wise ultrasonic impact peening [J]. J. Manuf. Process., 2022, 80: 320
doi: 10.1016/j.jmapro.2022.05.041
32 Panin A V, Kazachenok M S, Dmitriev A I, et al. The effect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension [J]. Mater. Sci. Eng., 2022, A832: 142458
33 Daavari M, Vanini S A S. Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment [J]. Mater. Lett., 2015, 139: 462
doi: 10.1016/j.matlet.2014.10.141
34 Panin S V, Sergeev V P, Pochivalov Y I, et al. Increase of wear-resistance of 30CrMnSi2Ni steel by ultrasonic impact and ion-beam treatments [A]. Proceedings of the 2008 3rd International Forum on Strategic Technologies [C]. Novosibirsk: IEEE, 2008: 83
35 Statnikov E S, Muktepavel V O. Technology of ultrasound impact treatment as a means of improving the reliability and endurance of welded metal structures [J]. Weld. Int., 2003, 17: 741
doi: 10.1533/wint.2003.3192
36 Berg-Pollack A, Voellmecke F J, Sonsino C M. Fatigue strength improvement by ultrasonic impact treatment of highly stressed spokes of cast aluminium wheels [J]. Int. J. Fatigue, 2011, 33: 513
doi: 10.1016/j.ijfatigue.2010.09.017
37 Guo C B, Wang Z J, Wang D P, et al. Numerical analysis of the residual stress in ultrasonic impact treatment process with single-impact and two-impact models [J]. Appl. Surf. Sci., 2015, 347: 596
doi: 10.1016/j.apsusc.2015.04.128
38 Mordyuk B N, Prokopenko G I. Ultrasonic impact peening for the surface properties' management [J]. J. Sound Vib., 2007, 308: 855
doi: 10.1016/j.jsv.2007.03.054
39 Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scr. Mater., 2006, 54: 1949
doi: 10.1016/j.scriptamat.2006.01.049
40 Xu L Y, Gao Y L, Zhao L, et al. Ultrasonic micro-forging post-treatment assisted laser directed energy deposition approach to manufacture high-strength Hastelloy X superalloy [J]. J. Mater. Process. Technol., 2022, 299: 117324
doi: 10.1016/j.jmatprotec.2021.117324
41 He B L, Xiong L, Jiang M M, et al. Surface grain refinement mechanism of SMA490BW steel cross joints by ultrasonic impact treatment [J]. Int. J. Min. Metall. Mater., 2017, 24: 410
doi: 10.1007/s12613-017-1421-6
42 Yang X J, Zhou J X, Liang X. Study on plastic damage of AISI 304 stainless steel induced by ultrasonic impact treatment [J]. Mater. Des., 2012, 36: 477
doi: 10.1016/j.matdes.2011.11.023
43 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain- gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
44 He B L, Yu X Y, Yu H H, et al. Grain refining mechanism and fatigue properties of bogie welded cruciform joints treated by ultrasonic impact [J]. Curr. Nanosci., 2012, 8: 17
doi: 10.2174/1573413711208010017
45 Panin S V, Pochivalov Y I, Perevalova O B, et al. Effect of ultrasonic impact treatment on mechanical properties of 3D-printed Ti-6Al-4V titanium alloy parts [J]. AIP Conf. Proc., 2019, 2141: 040012
46 Li M Y, Zhang Q, Han B, et al. Investigation on microstructure and properties of Al x CoCrFeMnNi high entropy alloys by ultrasonic impact treatment [J]. J. Alloys Compd., 2020, 816: 152626
doi: 10.1016/j.jallcom.2019.152626
47 Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. End. Perform., 2014, 23: 1917
48 Collins P C, Brice D A, Samimi P, et al. Microstructural control of additively manufactured metallic materials [J]. Annu. Rev. Mater. Res., 2016, 46: 63
doi: 10.1146/matsci.2016.46.issue-1
49 Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing [J]. Int. Mater. Rev., 2016, 61: 315
doi: 10.1080/09506608.2015.1116649
50 Yang Y C, Jin X, Liu C M, et al. Residual stress, mechanical properties, and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing [J]. Metals, 2018, 8: 934
doi: 10.3390/met8110934
51 Bezençon C, Schnell A, Kurz W. Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding [J]. Scr. Mater., 2003, 49: 705
doi: 10.1016/S1359-6462(03)00369-5
52 Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing [J]. Sci. Technol. Adv. Mater., 2001, 2: 185
doi: 10.1016/S1468-6996(01)00047-X
53 Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
doi: 10.1016/S1359-6454(00)00367-0
54 Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44A: 968
55 Wann C R, Li Y P, Tian W, et al. Influence of ultrasonic impact treatment and working current on microstructure and mechanical properties of 2219 aluminium alloy wire arc additive manufacturing parts [J]. J. Mater. Res. Technol., 2022, 21: 781
doi: 10.1016/j.jmrt.2022.09.055
56 Wang Y C, Shi J. Microstructure and properties of Inconel 718 fabricated by directed energy deposition with in-situ ultrasonic impact peening [J]. Metall. Mater. Trans., 2019, 50B: 2815
57 Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel [J]. Acta Mater., 2010, 58: 5354
doi: 10.1016/j.actamat.2010.06.010
58 Zhang H W, Hei Z K, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Mater., 2003, 51: 1871
doi: 10.1016/S1359-6454(02)00594-3
59 Wang M Y, Xin R L, Wang B S, et al. Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling [J]. Mater. Sci. Eng., 2011, A528: 2941
60 Wang X, Brünger E, Gottstein G. The role of twinning during dynamic recrystallization in alloy 800H [J]. Scr. Mater., 2002, 46: 875
doi: 10.1016/S1359-6462(02)00072-6
61 Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review [J]. Mater. Sci. Eng., 1997, A238: 219
62 Trufyakov V, Mikheev P, Kudryavtsev Y. Fatigue Strength of Welded Structures, Residual Stresses and Improvement Treatments [M]. London: Harwood Academic Publishers GmbH, 1995: 100
63 Holopov Y V. Treatment of metal welded joints by ultrasound aimed on residual stress decreasing [J]. Svar. Proiz., 1973, 12: 200
64 Prokopenko G, Kuzmich G. The accumulation of plastic strain in metals under multiple impulse loading of various frequencies [J]. Phys. Met., 1994, 13: 464
65 Statnikov E S, Korolkov O V, Vityazev V N. Physics and mechanism of ultrasonic impact [J]. Ultrasonics, 2006, 44: e533
doi: 10.1016/j.ultras.2006.05.119
66 Wang Y C, Shi J. Recrystallization behavior and tensile properties of laser metal deposited Inconel 718 upon in-situ ultrasonic impact peening and heat treatment [J]. Mater. Sci. Eng., 2020, A786: 139434
67 Mohtadi-Bonab M A, Eskandari M, Szpunar J A. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking [J]. Mater. Sci. Eng., 2015, A620: 97
68 AlMangour B, Grzesiak D, Yang J M. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting [J]. Mater. Des., 2016, 96: 150
doi: 10.1016/j.matdes.2016.02.022
69 Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 [J]. Mater. Sci. Eng., 2016, A678: 137
70 Siu K W, Ngan A H W, Jones I P. New insight on acoustoplasticity-ultrasonic irradiation enhances subgrain formation during deformation [J]. Int. J. Plast., 2011, 27: 788
doi: 10.1016/j.ijplas.2010.09.007
71 Kudryavtsev Y, Kleiman J, Lobanov L, et al. Fatigue life improvement of welded elements by ultrasonic peening [EB/OL].
72 McAndrew A R, Rosales M A, Colegrove P A, et al. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement [J]. Addit. Manuf., 2018, 21: 340
73 Tomio Y, Furuhara T, Maki T. Effect of cooling rate on superelasticity and microstructure evolution in Ti-10V-2Fe-3Al and Ti-10V-2Fe-3Al-0.2N alloys [J]. Mater. Trans., 2009, 50: 2731
doi: 10.2320/matertrans.MA200909
74 Furuhara T, Takayama N, Miyamoto G. Key factors in grain refinement of martensite and bainite [J]. Mater. Sci. Forum, 2010, 638-642: 3044
doi: 10.4028/www.scientific.net/MSF.638-642
75 Miao C L, Shang C J, Wang X M, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content [J]. Acta Metall. Sin., 2010, 46: 541
doi: 10.3724/SP.J.1037.2009.00803
75 缪成亮, 尚成嘉, 王学敏 等. 高Nb X80管线钢焊接热影响区显微组织与韧性 [J]. 金属学报, 2010, 46: 541
doi: 10.3724/SP.J.1037.2009.00803
76 Sun L B, Guo C H, Huang R S, et al. Effect and mechanism of inter-layer ultrasonic impact strengthening on the anisotropy of low carbon steel components fabricated by wire and arc additive manufacturing [J]. Mater. Sci. Eng., 2022, A848: 143382
77 Schaller R, Rivière A. Recrystallization [J]. Mater. Sci. Forum, 2001, 366-368: 276
doi: 10.4028/www.scientific.net/MSF.366-368
78 Estrin E I. Recrystallization-induced plasticity [J]. Phys. Met. Metall., 2006, 102: 324
doi: 10.1134/S0031918X06090134
79 Monroe J A, Gehring D, Karaman I, et al. Tailored thermal expansion alloys [J]. Acta Mater., 2016, 102: 333
doi: 10.1016/j.actamat.2015.09.012
80 Liu G, Li J, Zhang S G, et al. Dilatometric study on the recrystallization and austenization behavior of cold-rolled steel with different heating rates [J]. J. Alloys Compd., 2016, 666: 309
doi: 10.1016/j.jallcom.2016.01.137
81 Chakravarthy S S, Curtin W A. Effect of source and obstacle strengths on yield stress: A discrete dislocation study [J]. J. Mech. Phys. Solids, 2010, 58: 625
doi: 10.1016/j.jmps.2010.03.004
82 Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting [J]. Mater. Charact., 2013, 84: 153
doi: 10.1016/j.matchar.2013.07.012
83 Dinda G P, Dasgupta A K, Mazumder J. Texture control during laser deposition of nickel-based superalloy [J]. Scr. Mater., 2012, 76: 503
84 Lin D Y, Xu L Y, Jing H Y, et al. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting [J]. Addit. Manuf., 2020, 32: 101058
85 Stüwe H P, Padilha A F, Siciliano Jr F. Competition between recovery and recrystallization [J]. Mater. Sci. Eng., 2002, A333: 361
86 Quested T E, Greer A L. Athermal heterogeneous nucleation of solidification [J]. Acta Mater., 2005, 53: 2683
doi: 10.1016/j.actamat.2005.02.028
87 Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
88 Martorano M A, Beckermann C, Gandin C A. A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification [J]. Metall. Mater. Trans., 2003, 34A: 1657
89 Reinhart G, Mangelinck-Noël N, Nguyen-Thi H, et al. Investigation of columnar-equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography [J]. Mater. Sci. Eng., 2005, A413-414: 384
90 Kad B K, Gebert J M, Perez-Prado M T, et al. Ultrafine-grain-sized zirconium by dynamic deformation [J]. Acta Mater., 2006, 54: 4111
doi: 10.1016/j.actamat.2006.03.053
91 Vasylyev M A, Chenakin S P, Yatsenko L F. Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy [J]. Acta Mater., 2016, 103: 761
doi: 10.1016/j.actamat.2015.10.041
92 Petrov Y N, Prokopenko G I, Mordyuk B N, et al. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy [J]. Mater. Sci. Eng., 2016, C58: 1024
93 Kar P, Wang K, Liang H. Force-dominated non-equilibrium oxidation kinetics of tantalum [J]. Electrochim. Acta, 2008, 53: 5084
doi: 10.1016/j.electacta.2008.02.034
94 Singh V, Marya M, Roy I, et al. Surface property enhancement of UNS N07718 and G41400 by ultrasonic impact treatment [J]. Mater. Sci. Forum, 2014, 783-786: 2863
doi: 10.4028/www.scientific.net/MSF.783-786
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[4] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
[11] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[12] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[13] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[14] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[15] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.