|
|
轻质高强高阻尼HfO2@CNT/聚合物/CuAlMn复合材料的制备及性能 |
蒋招汉1, 邱文婷1, 龚深1,2( ), 李周1,2 |
1中南大学 材料科学与工程学院 长沙 410083 2中南大学 粉末冶金国家重点实验室 长沙 410083 |
|
Preparation and Properties of Lightweight HfO2@CNT/Polymer/CuAlMn Composite with High Strength and High Damping |
JIANG Zhaohan1, QIU Wenting1, GONG Shen1,2( ), LI Zhou1,2 |
1School of Materials Science and Engineering, Central South University, Changsha 410083, China 2State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
引用本文:
蒋招汉, 邱文婷, 龚深, 李周. 轻质高强高阻尼HfO2@CNT/聚合物/CuAlMn复合材料的制备及性能[J]. 金属学报, 2024, 60(3): 287-298.
Zhaohan JIANG,
Wenting QIU,
Shen GONG,
Zhou LI.
Preparation and Properties of Lightweight HfO2@CNT/Polymer/CuAlMn Composite with High Strength and High Damping[J]. Acta Metall Sin, 2024, 60(3): 287-298.
1 |
Zhang R D, Zhao J L. Damping material of reducing vibration and noise and its application [J]. Shanghai Met., 2002, 24(2): 18
|
1 |
张人德, 赵钧良. 减振降噪阻尼材料及其应用 [J]. 上海金属, 2002, 24(2): 18
|
2 |
Liu R, Sun H L, Liu X L, et al. Effect of Gd on microstructure, mechanical properties and damping properties of Fe-Cr-Al alloys [J]. Mater. Charact., 2022, 187: 111841
doi: 10.1016/j.matchar.2022.111841
|
3 |
Li Z Z, Yan H G, Chen J H, et al. Enhancing damping capacity and mechanical properties of Al-Mg alloy by high strain rate hot rolling and subsequent cold rolling [J]. J. Alloys Compd., 2022, 908: 164677
doi: 10.1016/j.jallcom.2022.164677
|
4 |
Wang S H, Li J, Chai F, et al. Influence of solution temperature on γ→ε transformation and damping capacity of Fe-19Mn Alloy [J]. Acta Metall. Sin., 2020, 56: 1217
|
4 |
王世宏, 李 健, 柴 锋 等. 固溶温度对Fe-19Mn合金的γ→ε相变和阻尼性能的影响 [J]. 金属学报, 2020, 56: 1217
doi: 10.11900/0412.1961.2020.00005
|
5 |
Hufenus R, Gottardo L, Leal A A, et al. Melt-spun polymer fibers with liquid core exhibit enhanced mechanical damping [J]. Mater. Des., 2016, 110: 685
doi: 10.1016/j.matdes.2016.08.042
|
6 |
Xu Z P, Ha C S, Kadam R, et al. Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices [J]. Addit. Manuf., 2020, 32: 101106
|
7 |
Feng Q, Shen M L, Zhu J M, et al. Realization of polyurethane/epoxy interpenetrating polymer networks with a broad high-damping temperature range using β-cyclodextrins as chain extenders [J]. Mater. Des., 2021, 212: 110208
doi: 10.1016/j.matdes.2021.110208
|
8 |
Wang Y B, Jiang H J, Liu C Y, et al. Influence of Al particle layer on damping behavior of Alp/7075Al composites fabricated by hot rolling [J]. J. Alloys Compd., 2021, 882: 160763
doi: 10.1016/j.jallcom.2021.160763
|
9 |
Jiao Z X, Wang Q Z, Yin F X, et al. Novel laminated multi-layer graphene/Cu-Al-Mn composites with ultrahigh damping capacity and superior tensile mechanical properties [J]. Carbon, 2022, 188: 45
doi: 10.1016/j.carbon.2021.11.055
|
10 |
Yao Y T, Chen L Q, Wang W G. Damping capacities of (B4C+Ti) hybrid reinforced Mg and AZ91D composites processed by in situ reactive infiltration technique [J]. Acta. Metall. Sin., 2019, 55: 141
|
10 |
姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能 [J]. 金属学报, 2019, 55: 141
doi: 10.11900/0412.1961.2018.00108
|
11 |
Feng Z X, Han F, Feng M, et al. Effects of constrained layer damping patches on the sound insulation characteristics of aircraft panels [J]. Noise Vibrat. Control, 2016, 36(3): 76
|
11 |
冯梓鑫, 韩 峰, 冯 盟 等. 约束层阻尼对飞机壁板隔声特性的影响 [J]. 噪声与振动控制, 2016, 36(3): 76
doi: 10.3969/j.issn.1006-1335.2016.03.016
|
12 |
Wang Y, Liu Z M, Li S Q, et al. Vibration temperature-increase research of viscoelastic material applied on constrained damping vibration isolator [J]. J. Vib. Eng., 2010, 23: 585
|
12 |
王 跃, 刘志敏, 李世其 等. 约束阻尼型隔振器粘弹材料振动温升研究 [J]. 振动工程学报, 2010, 23: 585
|
13 |
Wang G Q. Vibration and noise reduction research on ocean engineering bulkhead structure [D]. Qingdao: Ocean University of China, 2013
|
13 |
王国庆. 海洋工程舱壁结构减振降噪问题研究 [D]. 青岛: 中国海洋大学, 2013
|
14 |
Sil A, Sharma R, Ray S. Mechanical and thermal characteristics of PMMA-based nanocomposite gel polymer electrolytes with CNFs dispersion [J]. Surf. Coat. Technol., 2015, 271: 201
doi: 10.1016/j.surfcoat.2014.12.036
|
15 |
Toyoda N, Yamamoto T. Dispersion of carbon nanofibers modified with polymer colloids to enhance mechanical properties of PVA nanocomposite film [J]. Colloids Surf., 2018, 556A: 248
|
16 |
Mlyniec A, Korta J, Kudelski R, et al. The influence of the laminate thickness, stacking sequence and thermal aging on the static and dynamic behavior of carbon/epoxy composites [J]. Compos. Struct., 2014, 118: 208
doi: 10.1016/j.compstruct.2014.07.047
|
17 |
Ma M. Preparation and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT as rigid piezo-damping materials [D]. Beijing: Beijing University of Chemical Technology, 2009
|
17 |
马 敏. 碳纳米管/铌镁锆钛酸铅/环氧树脂基压电阻尼材料的制备及性能研究 [D]. 北京: 北京化工大学, 2009
|
18 |
Xu P, Yang K, Yu Y H. Research on damping property of foam aluminum-epoxy resin composite [J]. Hot Work. Technol., 2013, 42: 110
|
18 |
徐 平, 杨 昆, 于英华. 泡沫铝/环氧树脂复合材料阻尼性能的研究 [J]. 热加工工艺, 2013, 42: 110
|
19 |
Chen M, Jiang H, Wang Y R, et al. Study on the effect of metallic foam on the sound absorption properties of phononic glass [A]. 14th Symposium on Underwater Noise of Ships [C]. 2013-08-22, Chongqing, China Ship Science Research Center, 2013: 553
|
19 |
陈 猛, 姜 恒, 王育人 等. 泡沫金属对声子玻璃吸声性能的影响研究 [A]. 第十四届船舶水下噪声学讨论会 [C]. 2013-08-22, 重庆, 2013: 553
|
20 |
Gong S, Li Z, Xu G Y, et al. Fabrication, microstructure and property of cellular CuAlMn shape memory alloys produced by sintering-evaporation process [J]. J. Alloys Compd., 2011, 509: 2924
doi: 10.1016/j.jallcom.2010.11.157
|
21 |
Wang C, Jia J R. Damping and mechanical properties of polyol cross-linked polyurethane/epoxy interpenetrating polymer networks [J]. High Perform. Polym., 2014, 26: 240
doi: 10.1177/0954008313508421
|
22 |
Li Z, Wang M P, Xu G Y, et al. The martensite structure and its variation during aging in Cu-Al-Mn alloy [J]. Trans. Mater. Heat Treat., 2002, 23(2): 16
|
22 |
李 周, 汪明朴, 徐根应 等. Cu-Al-Mn合金马氏体结构及其在时效过程中的变化 [J]. 材料热处理学报, 2002, 23(2): 16
|
23 |
Wang Q Z, Han F S, Wu J, et al. Damping behavior of porous CuAlMn shape memory alloy [J]. Mater. Lett., 2007, 61: 2598
doi: 10.1016/j.matlet.2006.10.007
|
24 |
Inamura T, Yamamoto Y, Hosoda H, et al. Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy [J]. Acta Mater., 2010, 58: 2535
doi: 10.1016/j.actamat.2009.12.040
|
25 |
Bertrand E, Castany P, Gloriant T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti-Ta-Nb alloy [J]. Acta Mater., 2013, 61: 511
doi: 10.1016/j.actamat.2012.09.065
|
26 |
Zhao L C, Zhang Z, Song Y T, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications [J]. Mater. Des., 2016, 108: 136
doi: 10.1016/j.matdes.2016.06.080
|
27 |
Ji X W, Wang Q Z, Yin F X, et al. Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites [J]. Composites, 2018, 107A: 21
|
28 |
Brandes E A, Brook G. Smithells Metals Reference Book [M]. Oxford Boston: Butterworth-Heinemann, 2013: 15
|
29 |
Zhang J, Perez R J, Lavernia E J. Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials [J]. J. Mater. Sci., 1993, 28: 2395
doi: 10.1007/BF01151671
|
30 |
San Juan J, Nó M L. Damping behavior during martensitic transformation in shape memory alloys [J]. J. Alloys Compd., 2003, 355: 65
doi: 10.1016/S0925-8388(03)00277-9
|
31 |
Zheng X H, Ning R, Duan J T, et al. Martensitic transformation and damping behavior of Ti70 - x Ta15Zr15Fe x (x = 0.3, 0.6, 1.0) shape memory thin films [J]. Acta Metall. Sin., 2020, 56: 1690
|
31 |
郑晓航, 宁 睿, 段佳彤 等. Ti70 - x Ta15Zr15Fe x (x = 0.3, 0.6, 1.0)形状记忆合金薄膜的马氏体相变与阻尼行为 [J]. 金属学报, 2020, 56: 1690
doi: 10.11900/0412.1961.2020.00155
|
32 |
Jiang Z H, Cai H Y, Chen X L, et al. Improving the mechanical and damping properties of polymer/memory alloy composite by introducing nanotubes covered with nano-scale Ni particles [J]. Composites, 2022, 156A: 106856
|
33 |
Ajayan P M, Suhr J, Koratkar N. Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping [J]. J. Mater. Sci., 2006, 41: 7824
doi: 10.1007/s10853-006-0693-4
|
34 |
Mahmoodi M J, Vakilifard M. Interfacial effects on the damping properties of general carbon nanofiber reinforced nanocomposites—A multi-stage micromechanical analysis [J]. Compos. Struct., 2018, 192: 397
doi: 10.1016/j.compstruct.2018.03.012
|
35 |
Yan N J. Structure and properties of the porous CuAlMn shape memory alloys [D]. Tianjin: Hebei University of Technology, 2013
|
35 |
闫娜君. 多孔CuAlMn形状记忆合金的结构、性能研究 [D]. 天津: 河北工业大学, 2013
|
36 |
Li D S, Zhang X P, Xiong Z P, et al. Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength [J]. J. Alloys Compd., 2010, 490: L15
doi: 10.1016/j.jallcom.2009.10.025
|
37 |
Papanicolaou G C, Paipetis S A, Theocaris P S. The concept of boundary interphase in composite mechanics [J]. Colloid. Polym. Sci., 1978, 256: 625
doi: 10.1007/BF01784402
|
38 |
Theocaris P S, Papanicolaou G C. The effect of the boundary interphase on the thermomechanical behaviour of composites reinforced with short fibres [J]. Fibre Sci. Technol., 1979, 12: 421
doi: 10.1016/0015-0568(79)90016-2
|
39 |
Drzal L. Composite interphase characterization [J]. SAMPE J., 1983, 19: 7
|
40 |
Chaturvedi S K, Tzeng G Y. Micromechanical modeling of material damping in discontinuous fiber three-phase polymer composites [J]. Compos. Eng., 1991, 1: 49
doi: 10.1016/0961-9526(91)90025-N
|
41 |
Bao W X, Zhu C C, Cui W Z. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics [J]. Physics, 2004, 352B: 156
|
42 |
Scarpa F, Adhikari S, Phani A S. Effective elastic mechanical properties of single layer graphene sheets [J]. Nanotechnology, 2009, 20: 065709
|
43 |
Jiang Z H, Wang F M J, Yin J L, et al. Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites [J]. Composites, 2020, 199B: 108266
|
44 |
Li B, Wei Y L, Meng F C, et al. Atomistic simulations of vibration and damping in three-dimensional graphene honeycomb nanomechanical resonators [J]. Superlatt. Microstruct., 2020, 139: 106420
doi: 10.1016/j.spmi.2020.106420
|
45 |
Sazonova V, Yaish Y, Üstünel H, et al. A tunable carbon nanotube electromechanical oscillator [J]. Nature, 2004, 431: 284
doi: 10.1038/nature02905
|
46 |
Qian D, Zhou Z. Visco-elastic properties of carbon nanotubes and their relation to damping [A]. Time Dependent Constitutive Behavior and Fracture/Failure Processes, Vol.3 [M]. New York: Springer, 2011: 259
|
47 |
Patel R K, Bhattacharya B, Basu S. Effect of interphase properties on the damping response of polymer nano-composites [J]. Mech. Res. Commun., 2008, 35: 115
doi: 10.1016/j.mechrescom.2007.08.005
|
48 |
Wang K F, Okuno K, Banu M, et al. Vibration-based identification of interphase properties in long fiber reinforced composites [J]. Compos. Struct., 2017, 174: 244
doi: 10.1016/j.compstruct.2017.04.018
|
49 |
Pathan M V, Tagarielli V L, Patsias S. Effect of fibre shape and interphase on the anisotropic viscoelastic response of fibre composites [J]. Compos. Struct., 2017, 162: 156
doi: 10.1016/j.compstruct.2016.11.046
|
50 |
Vantomme J. A parametric study of material damping in fibre-reinforced plastics [J]. Composites, 1995, 26: 147
doi: 10.1016/0010-4361(95)90415-V
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|