|
|
搅拌摩擦增材制造技术研究进展 |
李会朝1, 王彩妹1, 张华1( ), 张建军1, 何鹏2, 邵明皓1, 朱晓腾1, 傅一钦3 |
1.北京石油化工学院 机械工程学院 北京 102617 2.哈尔滨工业大学 先进焊接与连接国家重点实验室 哈尔滨 150001 3.中国石油天然气集团有限公司 北京 100724 |
|
Research Progress of Friction Stir Additive Manufacturing Technology |
LI Huizhao1, WANG Caimei1, ZHANG Hua1( ), ZHANG Jianjun1, HE Peng2, SHAO Minghao1, ZHU Xiaoteng1, FU Yiqin3 |
1.School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China 2.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China 3.China National Petroleum Corporation, Beijing 100724, China |
引用本文:
李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
Huizhao LI,
Caimei WANG,
Hua ZHANG,
Jianjun ZHANG,
Peng HE,
Minghao SHAO,
Xiaoteng ZHU,
Yiqin FU.
Research Progress of Friction Stir Additive Manufacturing Technology[J]. Acta Metall Sin, 2023, 59(1): 106-124.
1 |
Wang H J. Research status and development tendency of additive manufacturing [J]. J. Beijing Inf. Sci. Technol. Univ., 2014, 29(3): 20
|
1 |
王红军. 增材制造的研究现状与发展趋势 [J]. 北京信息科技大学学报, 2014, 29(3): 20
|
2 |
Lian Y P, Wang P D, Gao J, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review [J]. Adv. Mech., 2021, 51: 648
|
2 |
廉艳平, 王潘丁, 高 杰 等. 金属增材制造若干关键力学问题研究进展 [J]. 力学进展, 2021, 51: 648
|
3 |
Lu B H, Li D C. Development of the additive manufacturing (3D printing ) technology [J]. Mach. Build. Auto., 2013, 42(4): 1
|
3 |
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展 [J]. 机械制造与自动化, 2013, 42(4): 1
|
4 |
Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromach. Mould, 2012, (S1): 20
|
4 |
李涤尘, 田小永, 王永信 等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (S1): 20
|
5 |
Yang Y H. Analysis of classifications and characteristic of additive manufacturing (3D print) [J]. Adv. Aeronaut. Sci. Eng., 2019, 10: 309
|
5 |
杨延华. 增材制造(3D打印)分类及研究进展 [J]. 航空工程进展, 2019, 10: 309
|
6 |
Zhang H, Yang K. Overview of the present situation and application of additive manufacturing [J]. Packag. Eng., 2021, 42(16): 9
|
6 |
张 衡, 杨 可. 增材制造的现状与应用综述 [J]. 包装工程, 2021, 42(16): 9
|
7 |
Harun W S W, Kamariah M S I N, Muhamad N, et al. A review of powder additive manufacturing processes for metallic biomaterials [J]. Powder Technol., 2018, 327: 128
doi: 10.1016/j.powtec.2017.12.058
|
8 |
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta. Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
8 |
孙晓峰, 宋 巍, 梁静静 等. 激光增材制造高温合金材料与工艺研究进展 [J]. 金属学报, 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
|
9 |
Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Mater. China, 2015, 34: 684
|
9 |
林 鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34: 684
|
10 |
Liu Y, Ren X H, Chang Y L, et al. Research status of metal additive manufacturing technology [J]. Hot Work. Technol., 2018, 47(19): 15
|
10 |
刘 勇, 任香会, 常云龙 等. 金属增材制造技术的研究现状 [J]. 热加工工艺, 2018, 47(19): 15
|
11 |
Hu M J, Ji L K, Ma Q R, et al. Overview of laser additive manufacturing technology and status [J]. Pet. Tubular Goods Instrum., 2019, 5(5): 1
|
11 |
胡美娟, 吉玲康, 马秋荣 等. 激光增材制造技术及现状研究 [J]. 石油管材与仪器, 2019, 5(5): 1
|
12 |
Zhang L H, Qian B, Zhang C R, et al. Summary of development trend of metal additive manufacturing technology [J]. Mater. Sci Technol., 2022, 30(1): 42
|
12 |
张立浩, 钱 波, 张朝瑞 等. 金属增材制造技术发展趋势综述 [J]. 材料科学与工艺, 2022, 30(1): 42
|
13 |
Zhou H L, Liu Y S, Song C B, et al. Development of 3D printing wire DY590 for additive manufacturing [J]. Weld. Technol., 2018, 47(6): 66
|
13 |
周海龙, 刘玉双, 宋昌宝 等. 增材制造用3D打印丝材DY590的开发 [J]. 焊接技术, 2018, 47(6): 66
|
14 |
Zhang X, Lin X H, Gao X Q, et al. Refractory metal materials made by additive manufacturing and its application progress [J]. Powder Metall. Ind., 2022, 32(3): 18
|
14 |
张 新, 林小辉, 高选乔 等. 增材制造难熔金属材料及其应用研究进展 [J]. 粉末冶金工业, 2022, 32(3): 18
|
15 |
Dang X L, Wang J. Research status and prospects of additive manufacturing technology at home and abroad [J]. Aviat. Precis. Manuf. Technol., 2020, 56(2): 35
|
15 |
党晓玲, 王 婧. 增材制造技术国内外研究现状与展望 [J]. 航空精密制造技术, 2020, 56(2): 35
|
16 |
Liu W, Li N, Zhou B, et al. Progress in additive manufacturing on complex structures and high-performance materials [J]. J. Mech. Eng., 2019, 55(20): 128
doi: 10.3901/JME.2019.20.128
|
16 |
刘 伟, 李 能, 周 标 等. 复杂结构与高性能材料增材制造技术进展 [J]. 机械工程学报, 2019, 55(20): 128
|
17 |
Gopan V, Leo Dev Wins K, Surendran A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review [J]. Cirp J. Manuf. Sci. Technol., 2021, 32: 228
doi: 10.1016/j.cirpj.2020.12.004
|
18 |
Yu L, Liu Y Y, Zhao Y. Research status of laser additive manufacturing material system for aluminum alloy [J/OL]. Surf. Technol.,
|
18 |
俞 亮, 刘永业, 赵 阳. 铝合金激光增材制造材料体系研究现状 [J/OL]. 表面技术,
|
19 |
Cao J W, Wang P, Liu Z Y, et al. Research progress on powder-based laser additive manufacturing technology of ceramics [J]. J. Inorg. Mater., 37(3), 2022, 37: 241
|
19 |
曹继伟, 王 沛, 刘志远 等. 基于粉末成形的激光增材制造陶瓷技术研究进展 [J]. 无机材料学报, 2022, 37: 241
doi: 10.15541/jim20210590
|
20 |
Gu D D, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
|
21 |
Li N, Liu W, Wang Y, et al. Laser additive manufacturing on metal matrix composites: A review [J]. Chin. J. Mech. Eng., 2021, 34: 38
doi: 10.1186/s10033-021-00554-7
|
22 |
Pique A, Auyeung R C Y, Kim H, et al. Laser 3D micro-manufacturing [J]. J. Phys., 2016, 49D: 223001
|
23 |
Peng Q, Dong S Y, Yan S X, et al. An overview of defects in laser melting deposition forming products and the corresponding controlling methods [J]. Mater. Rep., 2018, 32: 2666
|
23 |
彭 谦, 董世运, 闫世兴 等. 激光熔化沉积成形缺陷及其控制方法综述 [J]. 材料导报, 2018, 32: 2666
|
24 |
Teng S M. Research progress of wire and arc additive manufacturing (end) [J]. Nonferrous Met. Process., 2022, 51(2): 9
|
24 |
滕树满. 电弧熔丝增材制造研究进展(续完) [J]. 有色金属加工, 2022, 51(2): 9
|
25 |
Zhang H Z. Basic study on wire-arc additive manufacturing of magnesium alloy fabricated by cold metal transfer heat source [D]. Shijiazhuang: Shijiazhuang Tiedao Univercity, 2021
|
25 |
张汉铮. 基于冷金属过渡的镁合金电弧增材制造技术基础研究 [D]. 石家庄: 石家庄铁道大学, 2021
|
26 |
Xiong J, Xue Y G, Chen H, et al. Status and development prospects of forming control technology in arc-based additive manufacturing [J]. Electr. Weld. Mach., 2015, 45(9): 45
|
26 |
熊 俊, 薛永刚, 陈 辉 等. 电弧增材制造成形控制技术的研究现状与展望 [J]. 电焊机, 2015, 45(9): 45
|
27 |
Xiong J T, Geng H B, Lin X, et al. Research status of wire and arc additive manufacture and its application in aeronautical manufacturing [J]. Aeronaut. Manuf. Technol., 2015, 58(23-24): 80
|
27 |
熊江涛, 耿海滨, 林 鑫 等. 电弧增材制造研究现状及在航空制造中应用前景 [J]. 航空制造技术, 2015, 58(23-24): 80
|
28 |
Sun J X, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
|
28 |
孙佳孝, 杨 可, 王秋雨 等. 5356铝合金TIG电弧增材制造组织与力学性能 [J]. 金属学报, 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
|
29 |
Wang M. Study on microstructure and mechanical properties of additive manufactured titanium alloy based on electron beam melting [D]. Zibo: Shandong University of technology, 2019
|
29 |
王 铭. 电子束增材制造钛合金组织与力学性能研究 [D]. 淄博: 山东理工大学, 2019
|
30 |
Wu F, Lin B C, Quan Y Z, et al. Review on equipment and application of electron-beam based additive manufacturing [J]. Vacuum, 2022, 59(1): 79
|
30 |
吴 凡, 林博超, 权银洙 等. 电子束增材制造设备及应用进展 [J]. 真空, 2022, 59(1): 79
|
31 |
Li S W, Gao Q W, Zhao J, et al. Research progress and prospect of electron beam freeform fabrication [J]. Mater. China, 2021, 40: 130
|
31 |
李绍伟, 郜庆伟, 赵 健 等. 电子束熔丝增材制造研究进展及展望 [J]. 中国材料进展, 2021, 40: 130
|
32 |
Zou S K. Investigation on the processing and mechanism of friction stir additive manufacturing of high strength aluminum alloy [D]. Beijing: Beijing Institute of Technology, 2016
|
32 |
邹胜科. 高强铝合金搅拌摩擦增材制造成形机理和工艺研究 [D]. 北京: 北京理工大学, 2016
|
33 |
Zhang H, Lin S B, Wu L, et al. Current progress and prospect of friction stir welding [J]. Trans. China Weld. Inst., 2003, 24(3): 91
|
33 |
张 华, 林三宝, 吴 林 等. 搅拌摩擦焊研究进展及前景展望 [J]. 焊接学报, 2003, 24(3): 91
|
34 |
Fu Z H, Huang M H, Zhou Z P, et al. Research status of friction stir welding [J]. Weld. Join., 2002, (11): 6
|
34 |
傅志红, 黄明辉, 周鹏展 等. 搅拌摩擦焊及其研究现状 [J]. 焊接, 2002, (11): 6
|
35 |
Gao Q W, Zhao J, Shu F Y, et al. Research progress in aluminum alloy additive manufacturing [J]. J. Mater. Eng., 2019, 47(11): 32
|
35 |
郜庆伟, 赵 健, 舒凤远 等. 铝合金增材制造技术研究进展 [J]. 材料工程, 2019, 47(11): 32
|
36 |
Hou Y X, Xu R Z, Li H, et al. Research status and prospect of friction stir welding technology of Al alloy [J]. Hot Work. Technol., 2019, 48(5): 1
|
36 |
侯艳喜, 徐荣正, 李 慧 等. 铝合金搅拌摩擦焊接技术的现状与展望 [J]. 热加工工艺, 2019, 48(5): 1
|
37 |
Threadgill P L, Leonard A J, Shercliff H R, et al. Friction stir welding of aluminium alloys [J]. Int. Mater. Rev., 2009, 54: 49
doi: 10.1179/174328009X411136
|
38 |
Johnson R. Friction stir welding of magnesium alloys [J]. Mater. Sci. Forum, 2003, 419-422: 365
doi: 10.4028/www.scientific.net/MSF.419-422.365
|
39 |
Li S Y. Research progress on friction stir welding process of aluminum/magnesium dissimilar alloys [J]. MW Met. Form., 2022, (6): 52
|
39 |
李首谊. 铝/镁异种合金搅拌摩擦焊工艺研究进展 [J]. 金属加工(热加工), 2022, (6): 52
|
40 |
Yang S Y, Liu D D. Status and prospect of friction stir welding of magnesium alloys [J]. Chin. J. Rare Met., 2014, 38: 896
|
40 |
杨素媛, 刘冬冬. 镁合金搅拌摩擦焊的研究现状与展望 [J]. 稀有金属, 2014, 38: 896
|
41 |
Ma Z Y, Shang Q, Ni D R, et al. Friction stir welding of magnesium alloys: A review [J]. Acta. Metall. Sin., 2018, 54: 1597
doi: 10.11900/0412.1961.2018.00392
|
41 |
马宗义, 商 乔, 倪丁瑞 等. 镁合金搅拌摩擦焊接的研究现状与展望 [J]. 金属学报, 2018, 54: 1597
doi: 10.11900/0412.1961.2018.00392
|
42 |
Shi Y W, Tang W. The principle and application of the friction stir welding [J]. Electr. Weld. Mach., 2000, 30(1): 6
|
42 |
史耀武, 唐 伟. 搅拌摩擦焊的原理与应用 [J]. 电焊机, 2000, 30(1): 6
|
43 |
Wang W F, Tong Y G, Wang C X. New wielding technology—FSW [J]. Electr. Weld. Mach., 2004, 34(1): 15
|
43 |
王文峰, 童彦刚, 王纯祥. 一种新型焊接工艺——搅拌摩擦焊 [J]. 电焊机, 2004, 34(1): 15
|
44 |
Zhang W, Chen X G, Zha C S. A new welding method of ship building—The principle and application of the friction stir welding [J]. Ship Sci. Technol., 2007, 29(4): 92
|
44 |
张 维, 陈宪刚, 查长松. 新型船舶焊接技术——搅拌摩擦焊的原理与应用 [J]. 舰船科学技术, 2007, 29(4): 92
|
45 |
Shen Z K. Hybrid friction stir welding technology for steel [D]. Lanzhou: Lanzhou University of Technology, 2011
|
45 |
申志康. 钢的复合搅拌摩擦焊技术 [D]. 兰州: 兰州理工大学, 2011
|
46 |
Zeng P. The characteristic of friction stir welding and its application in the aluminum alloy structure of ship [J]. Ship Ocean Eng., 2010, 39(1): 55
|
46 |
曾 平. 搅拌摩擦焊在船用铝合金结构中的应用 [J]. 船海工程, 2010, 39(1): 55
|
47 |
Luan G H. Development of friction stir welding in China [J]. Electr. Weld. Mach., 2004, 34(S1): 98
|
47 |
栾国红. 搅拌摩擦焊在中国的发展 [J]. 电焊机, 2004, 34(S1): 98
|
48 |
Liu R M, Sun C K, Dang Q M, et al. Research of friction stir welding tool [J]. Mach. Des. Manuf., 2004, (4): 45
|
48 |
刘日明, 孙成凯, 党青敏 等. 搅拌摩擦焊工具的研究现状 [J]. 机械设计与制造, 2004, (4): 45
|
49 |
Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review [J]. J. Mater. Sci. Techno., 2018, 34: 1
|
50 |
Xue F T, Liu H B. The overview of friction stir additive manufacturing [J]. Mod. Manuf. Eng., 2019, (4): 33
|
50 |
薛凤桐, 刘海滨. 摩擦搅拌增材制造发展概述 [J]. 现代制造工程, 2019, (4): 33
|
51 |
Shi L, Li Y, Xiao Y C, et al. Research progress of metal solid phase additive manufacturing based on friction stir [J]. J. Mater. Eng., 2022, 50(1): 1
|
51 |
石 磊, 李 阳, 肖亦辰 等. 基于搅拌摩擦的金属固相增材制造研究进展 [J]. 材料工程, 2022, 50(1): 1
|
52 |
Rathee S, Srivastava M, Pandey P M, et al. Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies [J]. Cirp J. Manuf. Sci. Tec., 2021, 35: 560
|
53 |
Mishra R S, Haridas R S, Agrawal P. Friction stir-based additive manufacturing [J]. Sci. Technol. Weld. Join., 2022, 27: 141
doi: 10.1080/13621718.2022.2027663
|
54 |
Gao H Y, Li H J. Friction additive manufacturing technology: A state-of-the-art survey [J]. Adv. Mech. Eng., 2021, 13(7): 1
|
55 |
Seidi E, Miller S F, Carlson B E. Friction surfacing deposition by consumable tools [J]. J. Manuf. Sci. Eng., 2021, 143: 120801
doi: 10.1115/1.4050924
|
56 |
Liu X C, Ni Z H, Pei X J, et al. An additive manufacturing device based on hot wire friction micro-forging and the application method [P]. Chin. Pat, 202110386023.0, 2021
|
56 |
刘小超, 倪中华, 裴宪军 等. 一种基于热丝摩擦微锻的增材制造装置及制造方法 [P]. 中国专利, 202110386023.0, 2021)
|
57 |
Wan L, Chen S H, Huang T F, et al. A device and method for FSW additive manufacturing using static shoulder cavity [P]. Chin. Pat, 202011448053.1, 2021
|
57 |
万 龙, 陈思浩, 黄体方 等. 一种利用静止轴肩空腔进行FSW增材制造的装置及方法 [P]. 中国专利: 202011448053.1, 2021)
|
58 |
Zhao H X. Wire filling friction stir additive manufacturing device and additive manufacturing method [P]. Chin. Pat, 201810235551.4, 2019
|
58 |
赵华夏. 一种填丝搅拌摩擦增材制造装置及增材制造方法 [P]. 中国专利, 201810235551.4, 2019)
|
59 |
Shi L, Li Y, Xiao Y C, et al. A wire-filled static shoulder friction stir welding and additive manufacturing device and method [P]. Chin. Pat, 202110160985.4, 2021
|
59 |
石 磊, 李 阳, 肖亦辰 等. 一种填丝静轴肩搅拌摩擦焊接与增材制造装置及方法 [P]. 中国专利, 202110160985.4, 2021)
|
60 |
Zhang Z, Yuan H L, Tan Z J. A new friction stir additive manufacturing machine [P]. Chin. Pat, 201810229291. X, 2018
|
60 |
张 昭, 苑红磊, 谭治军 等. 一种新型的搅拌摩擦增材制造机 [P]. 中国专利, 201810229291.X, 2018)
|
61 |
Huang Y X, Zou M D, Meng X C, et al. Friction head and friction stir additive manufacturing method with adjustable components and synchronously feeding material [P]. Chin. Pat, 201910550014.3, 2019
|
61 |
黄永宪, 邹明达, 孟祥晨 等. 一种组分可调同步送料的摩擦头及摩擦增材制造方法 [P]. 中国专利, 201910550014.3, 2019)
|
62 |
Rodriguez R I, Bruno Z S. Methods and containers for loading raw material rods into additive friction stir deposition machines [P]. Chin. Pat, 202010806557. X, 2021
|
62 |
罗盖·I·罗德里格斯, 布鲁诺·萨莫拉诺·森德罗斯. 用于将原料棒装载到增材摩擦搅拌沉积机中的方法和容器 [P]. 中国专利, 202010806557.X, 2021)
|
63 |
Zhao H X, Wang W B. Friction flow additive manufacturing device and additive manufacturing method [P]. Chin. Pat, 201810234931.6, 2019
|
63 |
赵华夏, 王卫兵. 一种流动摩擦增材制造装置及增材制造方法 [P]. 中国专利, 201810234931.6, 2019)
|
64 |
Wan L, Wen Q, Huang T F. A additive manufacturing mechanism and manufacturing method based on short rod materials [P]. Chin. Pat, 202110172383.0, 2021
|
64 |
万 龙, 温 琦, 黄体方. 一种基于短棒物料增材制造机构及制造方法 [P]. 中国专利, 202110172383.0, 2021)
|
65 |
Huang Y X, Xie Y M, Meng X C. Continuously feeding friction stir additive manufacturing device and method [P]. Chin. Pat, 202110411108. X, 2021
|
65 |
黄永宪, 谢聿铭, 孟祥晨. 一种连续进给送料搅拌摩擦增材制造装置及增材制造方法 [P]. 中国专利, 202110411108.X, 2021)
|
66 |
Liu H J, Liu X Q, Hu Y Y, et al. A method of friction stir welding additive manufacturing bar [P]. Chin. Pat, 201510955775.9, 2016
|
66 |
刘会杰, 刘向前, 胡琰莹 等. 一种搅拌摩擦焊增材制造棒材的方法 [P]. 中国专利, 201510955775.9, 2016)
|
67 |
Shu X, Wan L, Lv Z L. A granule friction stir additive manufacturing device and method [P]. Chin. Pat, 202110284601. X, 2021
|
67 |
树 西, 万 龙, 吕宗亮. 一种颗粒式搅拌摩擦增材制造装置及方法 [P]. 中国专利, 202110284601.X, 2021)
|
68 |
Wan L, Liu J L, Lv Z L. A semi-solid additive manufacturing device and method [P]. Chin. Pat, 202011606242.7, 2021
|
68 |
万 龙, 刘景麟, 吕宗亮. 一种半固态增材制造装置及方法 [P]. 中国专利, 202011606242.7, 2021)
|
69 |
Ji S D, Li M S, Yue Y M, et al. A device and method for radial additive manufacturing of friction stir welding [P]. Chin. Pat, 201910915488.3, 2020
|
69 |
姬书得, 李鸣申, 岳玉梅 等. 一种搅拌摩擦焊径向增材制造的装置与方法 [P]. 中国专利, 201910915488.3, 2020)
|
70 |
Seidi E, Miller S F. A novel approach to friction surfacing: Experimental analysis of deposition from radial surface of a consumable tool [J]. Coatings, 2020, 10: 1016
doi: 10.3390/coatings10111016
|
71 |
Sun C W. Study on technology and microstructure performance of side friction stir additive manufacturing [D]. Harbin: Northeast Forestry University, 2020
|
71 |
孙朝伟. 侧向搅拌摩擦增材制造工艺与组织性能研究 [D]. 哈尔滨: 东北林业大学, 2020
|
72 |
Hua P, Li R, Xiao M, et al. A method of additive manufacturing by consumable stirring friction tools [P]. Chin. Pat, 201711019260.3, 2018
|
72 |
华 鹏, 李 枘, 肖 萌 等. 一种通过消耗型搅拌摩擦工具增材制造的方法 [P]. 中国专利, 201711019260.3, 2018)
|
73 |
Fu X R, Xing L, Huang C P, et al. Microstructure of 2024 aluminum alloy by stationary shoulder friction stir additive manufacturing [J]. Chin. J. Nonferrous Met., 2019, 29: 1591
|
73 |
傅徐荣, 邢 丽, 黄春平 等. 静轴肩搅拌摩擦增材制造2024铝合金的组织特征 [J]. 中国有色金属学报, 2019, 29: 1591
|
74 |
Huang B. Study on additive manufacturing technology based on the principle of stationary shoulder friction stir welding [D]. Nanchang: Nanchang Hangkong University, 2016
|
74 |
黄 斌. 基于静轴肩搅拌摩擦焊的增材制造技术研究 [D]. 南昌: 南昌航空大学, 2016
|
75 |
He C S, Wei J X, Li Y, et al. A cooling friction stir additive manufacturing device and method [P]. Chin. Pat, 201811509290.7, 2019
|
75 |
何长树, 韦景勋, 李 颖 等. 一种施加冷却的搅拌摩擦增材制造装置及方法 [P]. 中国专利, 201811509290.7, 2019)
|
76 |
Xu N, Wang H F, Jiang D, et al. A stirring tool for friction stir additive manufacturing [P]. Chin. Pat, 201922157857.5, 2020
|
76 |
许 诺, 汪洪峰, 姜 迪 等. 一种用于搅拌摩擦增材制造的搅拌头 [P]. 中国专利, 201922157857.5, 2020)
|
77 |
Zhang H J, Liu X, Kong X L, et al. A friction stir additive manufacturing method for preset heterogeneous metal interlayers [P]. Chin. Pat, 202110354228.0, 2021
|
77 |
张会杰, 刘 旭, 孔旭亮 等. 一种预置异质金属夹层的搅拌摩擦增材制造方法 [P]. 中国专利, 202110354228.0, 2021)
|
78 |
Dilip J J S, Rafi H K, Ram G D J. A new additive manufacturing process based on friction deposition [J]. Trans. Indian Inst. Met., 2011, 64: 27
doi: 10.1007/s12666-011-0005-9
|
79 |
Griffiths R J, Petersen D T, Garcia D, et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy [J]. Appl. Sci., 2019, 9: 3486
doi: 10.3390/app9173486
|
80 |
Fu X R. Study on microstructure and properties of 2024 aluminum alloy by stationary shoulder frictional stir additive manufacturing [D]. Nanchang: Nanchang Hangkong University, 2018
|
80 |
傅徐荣. 2024铝合金静轴肩搅拌摩擦增材组织及性能研究 [D]. 南昌: 南昌航空大学, 2018
|
81 |
Gu T. Microstructure and properties of high strength aluminum alloy Al 2024 laser additive manufacturing [D]. Harbin: Harbin Institute of Technology, 2019
|
81 |
谷 涛. 高强度铝合金Al 2024激光增材制造组织与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
82 |
Qi Z W, Qi B J, Cong B Q, et al. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated [J]. J. Manuf. Process., 2019, 40: 27
doi: 10.1016/j.jmapro.2019.03.003
|
83 |
Wei J X. The microstructure and properties adjustment of friction stir additive manufactured build for 7N01 aluminum alloy [D]. Shenyang: Northeastern university, 2019
|
83 |
韦景勋. 7N01铝合金搅拌摩擦增材体显微组织与性能的控制 [D]. 沈阳: 东北大学, 2019
|
84 |
Wang N Q. Basic research on selective laser melting additive manufacturing process of NZ30K magnesium alloy [D]. Shanghai: Shanghai Jiao Tong University, 2020
|
84 |
王南清. NZ30K镁合金激光选区熔化增材制造成型工艺基础研究 [D]. 上海: 上海交通大学, 2020
|
85 |
Guo Y M. The laser additive manufacturing technology of aluminum alloy with melting wire [D]. Nanjing: Nanjing University of Science and Technology, 2018
|
85 |
郭一蒙. 铝合金激光熔丝增材制造工艺研究 [D]. 南京: 南京理工大学, 2018
|
86 |
Liang W Q, Ren X H, Yu Z T, et al. Microstructure and mechanical properties of wire arc additive manufacturing of AZ31 magnesium alloy [J/OL]. Mater. Sci. Technol.,
|
86 |
梁文奇, 任香会, 于振涛 等. 电弧增材制造AZ31镁合金组织与力学性能分析 [J/OL] 材料科学与工艺,
|
87 |
Zhou G S. Study on CMT arc additive manufacturing technology and microstructure and properties for 5556 aluminum alloy [D]. Shenyang: Shenyang University, 2021
|
87 |
周桂申. 5556铝合金CMT电弧增材制造技术及性能研究 [D]. 沈阳: 沈阳大学, 2021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|