金属学报, 2023, 59(1): 106-124 DOI: 10.11900/0412.1961.2022.00436

综述

搅拌摩擦增材制造技术研究进展

李会朝1, 王彩妹1, 张华,1, 张建军1, 何鹏2, 邵明皓1, 朱晓腾1, 傅一钦3

1.北京石油化工学院 机械工程学院 北京 102617

2.哈尔滨工业大学 先进焊接与连接国家重点实验室 哈尔滨 150001

3.中国石油天然气集团有限公司 北京 100724

Research Progress of Friction Stir Additive Manufacturing Technology

LI Huizhao1, WANG Caimei1, ZHANG Hua,1, ZHANG Jianjun1, HE Peng2, SHAO Minghao1, ZHU Xiaoteng1, FU Yiqin3

1.School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

2.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

3.China National Petroleum Corporation, Beijing 100724, China

通讯作者: 张 华,huazhang@bipt.edu.cn,主要从事搅拌摩擦焊和腐蚀防护研究

责任编辑: 李海兰

收稿日期: 2022-09-01   修回日期: 2022-10-04  

基金资助: 先进焊接与连接国家重点实验室(哈尔滨工业大学)开放课题研究基金项目(AWJ-23M08)
北京石油化工学院交叉科研探索项目(BIPTCSF-013)

Corresponding authors: ZHANG Hua, professor, Tel: 13521880280, E-mail:huazhang@bipt.edu.cn

Received: 2022-09-01   Revised: 2022-10-04  

Fund supported: State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology(AWJ-23M08)
Cross-Disciplinary Science Foundation from Beijing Institute of Petrochemical Technology(BIPTCSF-013)

作者简介 About authors

李会朝,男,1999年生,硕士生

摘要

本文归纳总结了国内外的搅拌摩擦增材制造(FSAM)技术的研究进展,搅拌摩擦增材制造具有成形快、增材效率高、过程绿色环保等特点。此外,其作为一种固相增材技术,能够有效避免其他熔化增材方法成形过程中引起的缩松、孔隙等缺陷。目前报道的搅拌摩擦增材制造方法,大致可以分为4大类:轴向增材制造、径向增材制造、消耗型搅拌摩擦工具增材制造和叠加板材增材制造。详细列举了搅拌摩擦增材与激光、电弧增材样品微观组织与性能,阐述了不同增材方法的优缺点和适用领域,介绍了搅拌摩擦增材设备单位及已经开展的初步应用和未来设计的搅拌摩擦增材装置的发展方向,为搅拌摩擦增材技术的进一步应用奠定了基础。

关键词: 固相增材; 搅拌摩擦; 增材制造; 微观组织; 力学性能

Abstract

This paper summarizes the research progress of friction stir additive manufacturing (FSAM) technology at home and abroad. FSAM is fast-forming, has high additive efficiency, and provides environmental protection. In addition, as a solid-phase additive technology, it effectively avoids shrinkage, porosity, and other defects caused by other melt-additive methods during molding. Currently, reported FSAM methods can be roughly divided into four categories: axial additive manufacturing, radial additive manufacturing, consumable friction-stir tool additive manufacturing, and superimposed plate additive manufacturing. The microstructures and properties of friction stir, laser, and arc additive samples are listed in detail. The advantages and disadvantages of the different additive methods and their application fields are expounded. The companies of friction stir additive equipment, the preliminary applications, and the development direction of friction stir additive equipment designed in the future are introduced. It lays a foundation for further application of friction stir additive technology.

Keywords: solid phase additive; friction stir; additive manufacturing; microstructure; mechanical property

PDF (5037KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124 DOI:10.11900/0412.1961.2022.00436

LI Huizhao, WANG Caimei, ZHANG Hua, ZHANG Jianjun, HE Peng, SHAO Minghao, ZHU Xiaoteng, FU Yiqin. Research Progress of Friction Stir Additive Manufacturing Technology[J]. Acta Metallurgica Sinica, 2023, 59(1): 106-124 DOI:10.11900/0412.1961.2022.00436

增材制造(additive manufacturing,AM)技术采用材料逐渐累加的方法制造实体零件,相对于传统的材料去除-切削加工技术,是一种“自下而上”的制造方法[1,2]。近20年来,AM技术取得了快速的发展,“快速原型制造(rapid prototyping)”、“三维打印(3D printing)”、“实体自由制造(solid free-form fabrication)”等各类的叫法分别从不同侧面展示了这种技术的特点[3~7]

AM技术一般可以采用激光束、电子束或电弧为热源进行增材[8~14]。但激光成形件[15~23]材料流动性差会降低成形件的精准度,故对粉体的要求较高,且增材件容易出现零件表面质量粗糙、发生翘曲变形、熔合不良、开裂等宏观缺陷,内部也容易产生残余应力、气孔、夹杂、微裂纹等微观缺陷,还极易出现氧化并产生孔隙,影响力学性能,需要惰性气体的保护等缺点;电弧[24~28]增材制造成形精度较差、成形尺寸难控制、成形过程稳定性差、成形件表面质量较低,一般成形件要再次加工其表面,随着增加沉积层高度,会出现晶粒逐渐粗化、零件热积累严重、难控制堆积层、散热条件变差、熔池过热、难于凝固,且在晶界处严重富集杂质元素等缺点;电子束增材制造[29~31]大尺寸结构件时成形件发生变形会造成应力集中,送丝过程中的熔池流动凝固收缩和丝材摆动会导致难以控制成形件加工精度,且要求真空环境,相对其他增材设备较为复杂的结构也增加了成本。激光、电子束和电弧等传统增材制造技术适用于钛合金等高温合金的制造,但是却难以制造大型高强铝合金整体结构件[32]。因此需要发展更优的AM技术。

搅拌摩擦增材制造(friction stir additive manufacturing,FSAM)技术是一种固相非熔化增材制造方法,不仅能够使构件性能更优异、制造能耗更低、成形尺寸更大、速度更快,而且在增材制造的过程中可以避免其他增材方法在熔化和凝固过程产生的气孔和裂纹等缺陷,增材区的力学性能好,工艺过程十分环保,不会产生有害气体,具有高效、高质和价格优势,在轻质金属增材制造领域具有巨大潜力。本文侧重整理了FSAM技术的各种增材方法,包括每种方法的增材结构和实施方式,为后续开发结构更简单、增材更高效、选材更灵活可控和增材成本更低等优点的搅拌摩擦增材装置提供参考。

1 FSAM技术及其原理

搅拌摩擦焊(friction stir welding,FSW)是由英国焊接研究所(TWI)于1991年发明的固相焊接技术[33,34],广泛应用在铝合金、镁合金等轻金属结构领域[35~41]。FSW不仅可以进行对接、搭接等不同的接头形式的焊接,还可以进行平焊、立焊等不同焊接位置的焊接,且焊接不需要消耗焊剂、焊条、焊丝等材料,也不需要采用Ar气等气体保护,相较于熔化焊,FSW焊接后结构的变形或残余应力就小得多。其原理[42~48]是在搅拌头的高速旋转下将其插入2个工件的接缝处,轴肩压紧在工件表面产生摩擦热,搅拌针搅拌产生附加摩擦热,然后随着搅拌头的移动,接缝处发生塑性变形的材料向焊接方向的后方流动,从而形成FSW焊缝。

FSAM技术是基于FSW的原理,通过搅拌头的摩擦产热和塑性变形做功,使增材材料与基材融合,将三维复杂形状构件制造转为简单的二维平面形状的逐层往复叠加,最终实现增材制造[49~52]

2 FSAM技术分类

根据FSAM过程的工艺特点,可分为轴向增材、径向增材、消耗型搅拌摩擦工具增材和叠加板材方式增材4类[53~55]。轴向增材,按采用的增材材料可分为丝材、粉末、棒料、颗粒和可添加多种增材材料的增材装置,其中棒料按形状还可以分为采用圆柱形棒材或长方形棒材;径向增材可细分为逐层进行和逐圈进行方式;消耗型搅拌摩擦工具增材是通过将搅拌头设计成与基材材料相同的棒材搅拌头,与基材摩擦形成增材层的摩擦表面沉积增材制造技术;叠加板材的方式增材是基于搅拌摩擦搭接焊的原理,将2块金属板材逐层焊接在一起,从而获得增材构件的制造工艺。具体分类如图1所示。

图1

图1   搅拌摩擦增材制造(FSAM)方法分类

Fig.1   Classification of friction stir additive manufacturing (FSAM) methods


2.1 轴向增材制造

2.1.1 采用丝材增材材料

(1) 利用热丝摩擦进行增材。刘小超等[56]设计的增材装置如图2[56]所示,首先利用罩体将搅拌头和感应线圈笼罩,向罩体内腔中通入惰性气体用来保护装置的受热部位,然后打开电源让感应线圈产热,加热到丝材熔点的0.45~0.95倍保持,接着开机让搅拌头旋转,将装置移动到待增材区的初始位置高度,进一步开启送丝装置将丝材送入搅拌头,再移动搅拌头即可进行增材制造。

图2

图2   热丝摩擦增材装置设备工作原理图[56]

Fig.2   Working principle diagram of hot wire friction additive device equipment[56]

(a) device working diagram (b) upward view of friction tool head


(2) 利用静止轴肩空腔进行增材。万龙等[57]设计的增材装置如图3所示,首先开启电机使搅拌针旋转,接着将整个装置下降,直到静止轴肩的底面下降到与基板表面相接,接着将丝材送入进料通道,丝材顺着通道到达搅拌针与静止轴肩构成的空腔结构处,在搅拌针的搅拌作用下,丝材塑化破碎,从另一侧的成形口流出,最后控制装置在基板表面向具有进料通道的一侧移动即可进行增材制造。

图3

图3   静止轴肩空腔增材装置原理图

Fig.3   Schematics of a stationary shaft shoulder cavity additive device

(a) schematics of additive structure of stationary shaft shoulder cavity

(b) enlarged schematic diagram of cavity and feed hole


(3) 利用螺旋槽进行增材。赵华夏[58]设计的增材装置如图4所示,预先将搅拌针放进轴肩内部通孔中,接着通过搅拌针上的螺旋槽送丝孔将丝材起始端送到轴肩内部的轴向通孔壁为止,接着启动驱动电机使轴肩旋转,控制整个装置下降直到轴肩底面与基体存在合适的顶锻力作用,此时轴肩下端面的螺旋槽搅拌形成搅拌区,丝材在轴向通孔壁的摩擦和其螺旋槽的切割作用下破碎塑化,并向下传输到基体表面,然后控制装置在基体表面移动,在轴肩下端面的螺旋槽搅拌摩擦和顶锻力作用下,破碎塑化后的材料沿着螺旋槽向外周扩散并沉积于基体表面,即进行增材制造。

图4

图4   螺旋槽增材装置原理图

Fig.4   Schematics of a spiral groove additive device

(a) device working diagram

(b) lower end face structure of the shaft shoulder

(c) schematic of stirring pin structure


(4) 静轴肩填丝增材。石磊等[59]设计的增材装置结构主要由搅拌针、静轴肩、丝材、静轴肩上的送丝孔和搅拌针侧壁外表面的螺旋槽组成,其中搅拌针的侧壁外表面与静轴肩的通孔内表面相配合,静轴肩的下端面比搅拌针的下端面高,搅拌针侧壁外表面的螺旋槽由其下端面的边线向上设置,螺旋槽高度比静轴肩送丝孔的高度高。首先启动电机使搅拌针旋转,控制整个装置向下移动使搅拌针插入基体中,此时基体在搅拌针的搅拌作用下塑化形成搅拌区,接着向送丝孔中输送丝材,丝材通过送丝孔到达搅拌针的螺旋槽处,并在螺旋槽的剪切作用下破碎,破碎的丝材随着螺旋槽向下传输到基体,并与基体材料混合,接着控制整个装置在待增材区移动,在静轴肩的挤压和搅拌针的搅拌作用下进行增材制造。

2.1.2 采用粉末增材材料

(1) 利用螺旋槽送粉增材。张昭等[60]设计的增材装置如图5所示,其中套筒固定在套筒轴肩上,档料板固定在出粉口周围。首先通过进料口加入粉末增材材料,接着启动驱动电机使轴承和套筒轴肩旋转,粉末材料在轴承的螺纹作用下,继续向下传输到套筒底部和套筒轴肩内壁形成的空腔位置,即出粉口处,进一步到达焊接系统中,在搅拌针搅拌和套筒轴肩的挤压作用,以及在档料板防止粉末材料溢出的作用下,粉末材料与基材结合进行增材。

图5

图5   螺旋槽粉末增材装置原理图

Fig.5   Schematic of spiral groove powder additive device


(2) 利用送料孔送粉增材。黄永宪等[61]设计的增材装置如图6[61]所示,其中进料部和送料部套装在摩擦体上,这3个部分构成摩擦头。首先对基板上表面进行清理,接着将摩擦头安装在焊机上,并调整摩擦头的轴线与基板法线成0°~3°的夹角后,下降摩擦头直到其摩擦部压入基板表面,接着向进料部加入粉末增材材料,材料向下通过上部储料池和送料孔进入下部的送料通道中,最后启动驱动电机使摩擦头旋转并移动,使粉末材料和基板结合进行增材制造。

图6

图6   送料孔粉末增材装置原理图[61]

Fig.6   Schematics of a powder additive device for the feed hole[61]

(a) working diagram of friction head (b) top view of the friction head


2.1.3 采用原棒料增材材料

(1) 采用原料棒增材制造。罗盖·I·罗德里格斯等[62]设计的增材装置如图7所示,原料棒可以采用矩形、三角形和其他合适的剖面。首先容器中的螺旋弹簧杆推动原料棒沿着轨道到达准备位置,接着准备制动器将原料棒推入送料孔,再通过装载致动器的装载轴将原料棒向下传输,接着原料棒通过容器的下部送料孔到达搅拌摩擦焊机的心轴处,控制心轴和容器及装载致动器同步旋转,利用旋转棒料与基材产生的摩擦,从而使原料棒塑化变形沉积在基材上进行增材制造。

图7

图7   方形原料条增材装置原理图

Fig.7   Schematics of an additive device for square raw material strips

(a) 3D cross-sectional view of the additive device

(b) plane cutaway view of the container of the system


(2) 利用流动摩擦进行增材。赵华夏等[63]设计的增材装置结构主要由圆棒状母材、轴肩、基体、轴肩空腔侧壁螺旋槽、轴肩空腔底面螺旋槽、轴肩空腔底面到轴肩下端面间的中心通孔及轴肩下端面螺旋槽组成。首先将母材放置于轴肩内部的空腔中,母材静止不旋转,且母材与轴肩内部的空腔底面之间存在顶锻力,再将整个装置下降直到轴肩下端面与基体平面相接且存在顶锻力,然后控制轴肩以一定速率旋转并在基体表面待增材区不断移动,由于母材静止与轴肩的空腔底面螺旋槽产生相对旋转,在摩擦作用下母材热塑化,接着热塑化的母材材料从轴肩空腔底面到轴肩下端面间的中心通孔流出,在轴肩下端面螺旋槽与基体表面的相对旋转产生的摩擦和顶锻力作用下,流出的热塑化材料在基体待增材区扩散并沉积,由此来实现增材制造。

(3) 采用短棒物料进行增材。万龙等[64]设计的增材装置如图8所示,其中搅拌头可从刀柄上拆卸以方便更换磨损后的搅拌头。首先将短棒物料添加到储料箱中,接着控制主轴开始旋转,储料箱中的短棒物料随之进入料道,进一步短棒物料在齿轮的转动作用下继续向下传输至刀柄,最终到达搅拌头,主轴的旋转带动搅拌头旋转,使短棒物料与基材产生摩擦进而塑化,再控制装置移动进行增材制造。

图8

图8   短棒物料增材装置原理图

Fig.8   Schematic of the short rod material additive device


(4) 采用方形原料条连续增材。黄永宪等[65]设计的增材装置如图9[65]所示,首先将增材原料添加到盘式送料机构的容纳孔中,再控制液压顶杆机构将方形原料条通过容纳孔,送入下方的2个离合模块的轴孔中,进一步到达定速送料机构,然后启动驱动电机使搅拌头旋转并压入基板预热一段时间,接着开启定速送料机构将原料条送入搅拌头的通孔中,直到原料条与基板接触摩擦,最后在待增材区移动整个机构,在凸起结构的搅拌和轴肩的挤压作用下,即进行增材制造。当前一根原料条快要用完时,上升上离合模块以脱离下离合模块的同轴旋转,并旋转盘式送料机构将新棒料对准上离合模块的轴线孔,获得新的原料条后再向下运动与下离合模块重新接触恢复旋转,重复此步骤即可进行连续送料。

图9

图9   原料棒连续增材装置原理图[65]

Fig.9   Schematics of a continuous additive device for raw material rod[65]

(a) schematic of the device structure

(b) sectional view of the feeding mechanism

(c) schematic of the end face of the stirring head

(d) schematic of the upper clutch module

(e) schematic of the lower clutch module


(5) FSAM棒材。刘会杰等[66]设计的增材装置结构主要由增材制造的圆柱形棒材、棒材夹持段、棒材摩擦段、增材制造的模具和增材制造的基板组成。首先选定增材的材料类型,并加工成圆柱形棒材,上部开设夹持槽方便安装在搅拌摩擦焊机上,并对加工好的棒材表面进行打磨和清洗。接着选择熔点比所选增材材料熔点高的管材材料,制造一个内径比圆柱形棒材直径大的环状管材模具,再选择熔点比所选增材材料熔点高的板材,制造增材制造的基板。然后对模具和基板打磨和清洗后,采用氩弧焊方法将模具与基板焊接,并将基板和模具固定在焊接设备上。最后将棒材安装在搅拌摩擦焊机上后启动电机使其旋转,控制棒材沿着模具轴线下降,直到与基板接触。棒材与基板发生摩擦,塑化后的棒材材料沉积在基板上,并向四周扩散到模具内表面处,直到所需的增材高度为止。

2.1.4 采用颗粒增材材料

树西等[67]设计的增材装置如图10所示,首先控制静轴肩的下端面与待增材表面的距离,使得颗粒物被挤出时静轴肩的下端面时能够与待增材表面接触。开启电机控制剪丝机构的裁剪部旋转,将丝材通过导丝孔送出,送出的丝材被裁剪成增材颗粒物材料,接着颗粒物下落到收集装置中,再通过出料口进入导料管,然后被送到静轴肩的进料口处,进一步通过搅拌针的螺旋导槽到达待增材区表面。颗粒物材料在搅拌针下端面的凸台搅拌和静轴肩的挤压作用,以及搅拌针的底面与待增材区表面摩擦的作用下,发生充分塑化,从而与待增材区材料结合进行增材制造。

图10

图10   颗粒式增材装置原理图

Fig.10   Schematic of a granular additive device


2.1.5 可添加多种增材材料

(1) 半固态增材制造。万龙等[68]设计的增材装置如图11所示,首先采用夹具固定基板,接着开启电机使搅拌头和旋转结构旋转。然后向进料孔中添加粉末或丝材增材材料,再开启感应加热装置,将填充进来的材料加热到其熔点的50%~80%。在加热装置、搅拌头和旋转结构的共同作用下,增材材料塑化成半固态,从出料孔流出到达待增材区表面与基材结合,然后控制装置移动进行增材制造。

图11

图11   半固态增材装置原理图

Fig.11   Schematics of a semi-solid-state additive device

(a) device working diagram (b) device sectional view


(2) 选择棒材或粉末进行增材。文献[50~52]综述的2种增材方式结构主要由基板、增材层、搅拌头、搅拌头通孔、搅拌针、棒材或粉末材料组成。首先向搅拌头的通孔中添加棒材或粉末材料,接着启动电机使搅拌头旋转,控制搅拌头下降直到其下端面与基材上表面保持合适距离,此时均匀分布在搅拌头下端面通孔周围的搅拌针插入基板中进行搅拌。然后对所添加的增材材料施加向下的压力,在搅拌针的搅拌作用和轴肩的挤压作用下,增材材料塑化与基板结合进行增材制造。

2.2 径向增材制造

2.2.1 逐圈进行增材制造

姬书得等[69]设计的增材装置如图12[69]所示。首先将模具放到焊接工作台并固定,在模具内壁涂抹脱模剂后,向模具中填满丝材、粉末或块状增材材料。选取一个具有与增材件相同高度搅拌针的搅拌头,将此搅拌头和其他相应配件组装好后安装在焊机上。接着启动电机使搅拌头旋转,对准模具轴线后下压,同时启动辅热垫板和施加超声振动,在辅热垫板加热与搅拌头摩擦搅拌的作用下,材料被加热到半固态,当搅拌针距离辅热垫板0~0.2 mm时停止下压,并保持搅拌头旋转1~60 s后停止旋转,继续保持压力0~1000 s后抽回搅拌头,停止辅热垫板继续加热,此时再施加一段时间的超声振动后也让其停止继续施加振动。待焊机冷却后更换比上述搅拌针直径更小的搅拌头,接着将原材料再次填满由搅拌针回抽而产生的匙孔,重复上述步骤进行第二次径向增材。然后再次更换具有更小搅拌针直径的搅拌头,重复上述步骤直到留下匙孔的深度小于1.5~2 mm时,采用无针的搅拌头来重复上述步骤,由此得到增材制造件。

图12

图12   径向逐圈增材装置原理图[69]

Fig.12   Schematics of a radial circle-by-turn additive device[69]

(a) device structure diagram

(b) bottom view of the stationary shaft shoulder and the stirring head

(c) schematic of stirring head structure

(d) schematic of the structure of the static shoulder body

(e) schematic of the mold structure

(f) schematic of the radial working process


2.2.2 逐层进行增材制造

Seidi和Miller[70]使用的增材装置如图13a所示,首先驱动电机驱使消耗型棒材旋转,接着控制旋转的棒材与基板接触并产生力的作用,再控制使其沿增材方向移动,即可进行第一层增材制造,第一层完成后,控制其与第一增材层接触并存在力的作用往回进行第二层增材,重复上述步骤即可进行逐层叠加增材,直到所需增材高度。孙朝伟[71]采用的增材方式如图13b所示,首先通过夹具将增材条料夹紧在基板上,接着启动电机使增材工具头旋转,并使其压入增材条料起始端进行摩擦加热,直到增材条料与基板表层被加热至塑性流动状态时,增材工具头开始向增材方向移动,由此在基板表面形成宽度大于增材条料的增材层。

图13

图13   径向逐层增材装置原理图

Fig.13   Schematics of a radial layer-by-layer additive device

(a) consumable rod lateral additive manufacturing

(b) overlay additive strips for lateral additive manufacturing


2.3 利用消耗型搅拌摩擦工具进行增材制造

华鹏等[72]设计的增材装置由基体和消耗型搅拌摩擦工具组成。首先选择大于所需制备金属材料最大截面积的基体,然后对基体表面进行打磨和清洗等表面处理过程,将基体安装固定在搅拌摩擦焊接工作台上。接着选取同样金属材料的圆棒状搅拌摩擦工具,在其上端开设夹持部后安装到焊接设备上,开机使其旋转,控制搅拌摩擦工具下降至与基板接触,在与基板摩擦作用下,消耗型搅拌摩擦工具塑化并沉积在基体上,从基体上表面开始逐层进行增材制造。

2.4 叠加板材进行增材制造

2.4.1 基于搅拌摩擦焊搭接增材制造

文献[50,51]综述的增材方式是基于搅拌摩擦搭接原理进行增材制造。首先对基板上下表面进行打磨和清洗后,将2个基板按从下到上顺序依次固定到焊接工作台上。接着选择搅拌针长度大于1个增材基板厚度但小于2个增材基板叠加厚度的搅拌头,将搅拌头安装到焊接设备上。然后启动驱动电机驱使搅拌头旋转,使其下降至第2层增材基板的上表面,接着控制搅拌头向焊接方向移动即可进行增材制造。焊接好2层基板之后,对第2层增材基板上表面及第3层增材基板上下表面进行打磨和清洗,再将第3层增材基板放到第2层增材板上并固定,重复上述步骤即可进行逐层叠加增材直到所需高度。

2.4.2 静轴肩叠加板材增材装置

傅徐荣等[73]和黄斌[74]设计的增材装置结构主要由搅拌针和静轴肩组成,与上述介绍的基于搅拌摩擦搭接原理装置增材过程相同,但不同的是轴肩是静止的,其中搅拌针安装在焊接设备主机上可以旋转,静轴肩内部通孔与搅拌针侧壁外表面相配合,搅拌针从静轴肩下端面突出的长度大于1个增材基板厚度但小于2个增材基板叠加厚度。

2.4.3 施加冷却的增材装置

何长树等[75]设计的增材装置结构如图14[75]所示,首先准备足够的增材用试板,并对其表面进行清洗和打磨。接着选取合适的搅拌头并安装到搅拌摩擦焊设备上。然后施加垫板使增材用试板高度与基座上表面持平,插入水冷块到基座的凹槽中,接着将2块增材用试板上下叠加放置到垫板上,并使增材用试板紧贴水冷块,控制气缸压紧2块增材用试板,并调整使压轮下降压紧增材用试板。接着向水冷块中通入冷却水后,控制搅拌头对2块板进行焊接即可。焊接好后对上面的增材用试板上表面进行清理,再放置到此板上一块增材用试板,重复上述步骤即可进行叠加增材。

图14

图14   施加冷却的增材装置原理图[75]

Fig.14   Schematics of an additive device applied to cooling[75]

(a) schematic of the three-dimensional structure of the additive device

(b) schematic of the contact between the water cooled blocks and the additive test plates


2.4.4 利用凸槽搅拌针增材

许诺等[76]设计的增材装置结构主要由夹持柄、轴肩、搅拌针、螺纹凹槽、竖直凹槽、上层板材和下层板材组成。搅拌针为圆柱形,搅拌针的圆周上开有螺纹凹槽,并且均匀开有4个或8个竖直凹槽,且搅拌针长度大于1个增材基板厚度但小于2个增材基板叠加厚度。首先对板材上下表面进行清洗和打磨,然后依次将下层板材和上层板材放到焊接工作台上,并固定好2个板材。接着将此带有特殊设计搅拌针的搅拌头安装在搅拌摩擦设备上,控制搅拌头焊接2块板即可进行增材制造。接着在上层板材上面放置新板材,重复上述步骤即可进行叠加增材直到所需增材高度。

2.4.5 添加预置异质金属夹层进行增材

张会杰等[77]设计的增材装置结构主要由异质金属夹层、增材复板、增材基板和焊具的搅拌针及轴肩组成。其中增材基板和增材复板材料相同,异质金属夹层材料为纯Pt片,增材基板厚度为2或3 mm,异质金属夹层的厚度为0.02~0.05 mm,增材复板厚度为1或2 mm,搅拌针的长度大于增材复板厚度加上异质金属夹层厚度。首先清理增材基板、增材复板以及异质金属夹层的表面,接着先将增材基板放置焊接工作台上,再放置异质金属夹层,最后是放置增材复板,然后使用夹具固定好增材基板、异质金属夹层和增材复板,进一步将搅拌头移动到初始焊接位置对增材组件进行焊接即可。焊接完成后,在增材复板上再依次放置异质金属夹层和第二块增材复板,重复上述步骤直到所要求高度,即可得到增材制造件。

3 FSAM样品组织、性能及应用

3.1 FSAM样品组织与性能

不同材料FSAM样品的性能与组织特点汇总如表1[71,78~80]所示。

表1   不同材料FSAM样品性能与组织特点[71,78~80]

Table 1  Properties and microstructure characteristics of FSAM samples of different materials[71,78-80]

MaterialFSAM methodMicrostructureMechanical propertyInstituteRef.
304 austenitic stainless steel

Consumable friction stir

tool

Equiaxed crystalsThe tensile test results show that the yield strength of the original stainless steel bar and the additive deposited part are 380 and 390 MPa, the tensile strength are 710 and 690 MPa, and the elongation are 50 % and 30 %, respectively

Indian Institute

of Technology

[78]
formed by
dynamic
recrystallization

7075 aluminum alloy

Axial addition of rod

The average hardness of the substrate and the additive raw rod is measured to be 164 HV, and most of the deposited materials exhibit a hardness value higher than 140 HV, comparable to the hardness of the raw rodVirginia Polytechnic Institute and State University[79]

2024 aluminum alloy

Superimposed

plate

The microhardness of the substrate is 130 HV, the minimum hardness of the bottom zone of the additive is 74 HV, and the maximum hardness of the top zone of the additive is 99 HV. The changes of the second phase and the grain cause the microhardness of the additive to be lower than that of the substrate

Nanchang Hangkong University

[80]

6561 aluminum alloy

Radial

layer-by-layer

additive

The tensile strength of the substrate and the additive strip is 465.57 MPa, and the maximum tensile strength of the stable additive zone is 203.67 MPa. The microhardness of the substrate and the additive strip is about 155 and 125 HV, respectively. The microhardness of the stable additive zone gradually decreases from the surface of the topmost additve strip to the interior,

but the hardness of the stable additive zone is generally stable at about 60 HV

Northeast Forestry University

[71]

新窗口打开| 下载CSV


FSAM与激光、电弧增材样品微观组织如表2[32,81,82]图15[32,81,82]所示,3种增材方式及每种增材方式不同材料的拉伸数据平均结果汇总如表3[32,74,81~87]所示。当同为2系铝合金但增材方法不同时,与2024-T6平行沉积激光增材件和AA2024-T6沿增材厚度方向电弧增材件相比,以2024-O铝合金为基材的FSAM增材件屈服强度分别降低了2.9%和66.7%,抗拉强度分别降低了11.5%和44.4%,延伸率分别是激光增材件和电弧增材件的5.8和14.8倍;2024-T6沿增材厚度方向电弧增材件比2024-T6平行沉积激光增材件的显微硬度明显增加。当为同种增材方法但取样方式不同时,以2024-T4铝合金为基材进行FSAM增材,沿增材厚度方向取样比沿平行于增材行进水平方向取样屈服强度降低了5.8%,抗拉强度降低了5.7%,延伸率降低了8%;电弧增材AZ31镁合金平行于增材行进水平方向取样与垂直于增材行进水平方向取样相比显微硬度相当。当增材方法和取样方法相同但热处理条件不同时,电弧增材件沿增材厚度方向取样,AA2024铝合金采用T6热处理条件比其采用T4热处理条件下的屈服强度提升了19.7%,抗拉强度提升了3.8%,延伸率降低了58%,显微硬度提升了5.8%。

表2   FSAM与激光、电弧增材样品微观组织特点[32,81,82]

Table 2  Microstructure characteristics of FSAM, laser and arc additive samples[32,81,82]

MaterialAdditiveStirring center coreDepositionDeposition crossInner depositionRef
manufacturingarealongitudinalsectionregion
(AM) methodsection

2024-O aluminium alloy

FSAMUniform equiaxed grains with an average size of about 9.4 μm---[32]

2024-T6 aluminium alloy

Laser additive manufacturing

-Stripe shaped microstructures with the ribbon spacing of 0.5 mm

Stripe shaped microstructure

-[81]

AA2024 aluminum alloy

Arc additive manufacturing

---Banded columnar dendrites, equiaxed dendrites, and equiaxed non-dendrites[82]

新窗口打开| 下载CSV


图15

图15   增材制造后样品微观组织对比图[32,81,82]

Fig.15   Comparison of microstructures of samples after additive manufacturing

(a) microstructure of the central core region of friction stir additive 2024 aluminum alloy[32]

(b) cross-sectional microstructure of laser additive manufactured 2024-T6 aluminum alloy[81]

(c) longitudinal sectional microstructure of laser additive manufactured 2024-T6 aluminum alloy[81]

(d) microstructure of arc additive manufactured AA2024 aluminum alloy (ED—equiaxed dendrite, END—equiaxed non-dendrite, CD—columar dendrite)[82]


表3   3种方法增材件的拉伸性能对比[32,74,81~87]

Table 3  Comparison of tensile property of three ways of additive parts[32,74,81-87]

AM method

Additive substrate

material

Condition classification

Sampling method of

tensile test

Rp0.2

MPa

Rm

MPa

A

%

H

MPa

Ref.
FSAM2024-OLap weldingParallel to the horizontal117.2227.831.1-[32]
aluminum alloysuperimposed platedirection of the additive travel
7N01-T4Along the direction of204.0297.019.478.0[83]
aluminum alloyadditive thickness
2024-T4Stationary shoulderAlong the direction of267.5268.263.072.0-92.0[74]
aluminum alloysuperimposed plateadditive thickness
Parallel to the horizontal283.9284.568.5-[74]
direction of the additive travel
Laser additive2024-T6Parallel deposition of 2024 aluminum alloy powderAlong the direction of120.7257.35.490.3[81]
manufacturingaluminum alloyadditive thickness

Cross deposition of

2024 aluminum alloy powder

188.3348.320.5110.8[81]
NZ30K-T5Selective laser meltingParallel to the horizontal380.0406.00.9-[84]
magnesiumof magnesium alloydirection of the additive
alloypowdertravel
6061 aluminumER4043 aluminumAlong the direction of114.7152.533.555.3[85]
alloysilicon alloy wireadditive thickness
Parallel to the horizontal119.7158.833.5-[85]
direction of the additive travel
Arc additiveAA2024-T6ER2319 Al-Cu alloyParallel to the horizontal374.0470.08.2146.0[82]
manufacturingaluminum alloyand ER5087 Al-Mgdirection of the additive travel
alloy wireAlong the direction of352.0410.02.1146.0[82]
additive thickness
AA2024-T4Parallel to the horizontal310.0458.012.7138.0[82]
aluminumdirection of the additive travel
alloyAlong the direction of294.0395.05.0138.0[82]
additive thickness
AZ31AZ31B magnesiumParallel to the horizontal77.3235.026.352.7[86]
magnesium alloyalloy welding wiredirection of the additive travel
Vertical to the horizontal76.0237.022.053.2[86]
direction of additive
manufacturing
5556 aluminumER5556 aluminumAlong the direction of-310.0-125.0[87]
alloyalloy welding wireadditive thickness

Note:Rp0.2yield strength, Rmtensile strength, A—elongation, H—Vickers hardness

新窗口打开| 下载CSV


3.2 FSAM不同增材方式的优缺点和适用领域

FSAM不同增材方式的优缺点和适用领域汇总如表4[58,59,61~63,65,67,69,71,72,75~77]所示。

表4   FSAM不同增材方式的优缺点和适用领域[58,59,61~63,65,67,69,71,72,75~77]

Table 4  Advantages and disadvantages and applicable fields of FSAM different additive methods[58,59,61-63,65,67,69,71,72,75-77]

FSAMAdditive formAdvantageDisadvantageScope of application
method
AxialWire materialLow cost; multiple wireSustainableComplexCarrier rockets, ships; automobiles
directionuninterruptedstructure;and other fields; suitable for
feeding holes; high
aluminum alloy ribbed panel
efficiency[59]additive;material
structure, inlet, complex frame
high additiveresidue in
beam structure of high efficiency,
efficiencyequipment
low cost manufacturing[58]
PowderChangeable moldingPreparation of new alloys difficult to prepare in equilibrium metallurgical processes[61]
parameters and additive
powder ratio[61]
Raw materialHigh material utilizationUltrafine grained homogeneous
rod
and small processingAM parts and thermoplastic
allowance[63]; expandedpolymers for various metals
additive geometry[62]and alloys[65]
GranulesDiversified materials andFSAM of gradient composites[67]
sizes[67]
VariousManufactruing of compositeFSAM of gradient composites[67]
materials canmaterials[67]
be added
RadialCircle-by-turnHigh additive quality; high load-bearingLow additiveManufacture of raw materials such
directionadditive components; high bonding strength[69]efficiencyas metals and metal matrix
composites with different
morphologies[69]
Layer-by-layerHigh material utilization; non-pollutingManufacture of dissimilar alloy
powder raw material; no structuraland light alloy structural parts[71]
limitations[71]
ConsumableRaw barSimple equipment method; simple operationAM of light metal structures such
frictionmaterialsteps; low cost; short manufacturing time;as aluminum alloy and magnesium
stir toolfast forming speed[72]alloy and stainless steel
SuperimposedLap based onSimple additive method; simple operationApplicable to aerospace,
plateFSWsteps; low costautomotive parts, ships, and
StationaryNo grinding or cutting after additiverail transportation fileds; and
shouldermanufacturingAM of aluminum alloy, magnesium
Apply coolingEffectively reduceing the thermal effect[75]alloy and other light metal
Stirring headThe material mixes more fully[76]structures, and stainless steel
with special
structure
Add presetHigh bonding strength; high joint quality;
heterogeneoushigh fracture strength[77]
metal
interlayer

Note: FSW—friction stir welding

新窗口打开| 下载CSV


3.3 目前FSAM设备及初步应用

目前的FSAM设备单位及其已经开展的应用汇总如表5所示,主要应用在轻质合金、铜合金、镍基合金及不锈钢方面,如美国弗吉尼亚州MELD制造公司已经研制直径超过1.397 m、长1.4 m的6061铝合金组件,北京工业大学采用填丝增材研制出飞机带筋壁板,哈尔滨工业大学采用Al-5%Si合金丝材为增材原料修复了AA6061-T4铝合金构件,天津大学采用轴向添加原棒料方法进行增材制造分析了6061-T6铝合金增材件内部及界面组织特征。

表5   FSAM设备单位及其开展的应用

Table 5  FSAM equipment units and the applications

FSAMAdditive raw materialAdditive rawFSAM methodPreliminary application
equipment unitmaterial form
Meld ManufacturingAluminum alloy,Metal powdersAxial directionPrinting large metal parts, coating
Company, USAcopper alloy, nickeland rawapplications; component repair; metal
base alloy, titaniummaterials rodconnection; custom metal alloy and metal
alloymatrix composite blanks and parts
Harbin Institute ofLight alloy partsWireForming a few meters of aluminum alloy
Technology, Chinacomponents; application in aerospace
field; battlefield repair for amphibious
vehicles
Tianjin University,Aluminum alloy,Raw materialsForming a few meters of aluminum
Chinaaluminum lithiumrodalloy components
alloy, dissimilar
aluminum alloy
Beijing University ofAluminum alloy,WireAluminum alloy stiffened panel structure
Technology, Chinamagnesium alloy
Nanchang HangkongAluminum alloyPlateStatic shoulderStudy on microstructure and
University, Chinasuperimposedmechanical properties of
plateadditive parts
Indian Institute ofAustenitic stainlessConsumableConsumable
Technology, Indiansteelraw barfriction stir tool
material
Virginia PolytechnicAluminum alloyRaw materialsAxial direction
Institute and Staterod
University, USA
Northeast ForestryAluminum alloyAdditive stripsRadial direction
University, China
Beijing Institute ofAluminum alloyPlateSuperimposed
Technology, Chinaplate based on
FSW lap
principle
Catholic University ofMetal alloys ofMixture of-FSAM of gradient composites
Louvain, Belgiumdifferent materialsmultiple
materials

新窗口打开| 下载CSV


4 结论

(1) FSAM主要针对轻质合金、铜合金、镍基合金及不锈钢等材料,在航空航天、汽车、船舶、轨道交通等领域具有广阔的应用前景,其实现增材的方法有很多种,大致可以分为轴向增材制造、径向增材制造、消耗型搅拌摩擦工具增材制造和叠加板材增材制造4大类。

(2) 采用消耗型搅拌摩擦工具方法增材和采用轴向添加原棒料方法增材,沉积材料都表现出与增材原料相当的力学性能。采用轴向叠加板材增材和采用径向叠加板材增材也表现出一个相同的趋势,即增材的显微硬度从顶部板向低部板逐渐减小。

(3) FSAM沉积区微观组织为等轴晶;激光增材沉积区微观结构为明暗交替且较为平直的纹带组织;电弧增材沉积区微观组织由柱状树枝晶、等轴树枝晶和等轴非树枝晶组成。

(4) 未来设计的FSAM装置的发展可以重点考虑以下几个方面:结构更简单,更容易批量制造,操作步骤更简便;可实现持续增材制造,节省时间,提高工作效率;使用增材成本低的增材材料,选材更加灵活多样化;增材后制造件的上表面成形良好,故不再需要进行减材,即打磨工序,提高生产效率;形成的增材件材料比较紧密,从而不容易产生夹杂气泡、小孔等缺陷;增材层的宽度和厚度可以自由灵活控制;设计更优形状的搅拌针,可使所增材料与基材充分结合,使加工过程更为顺利,提高增材制造成形质量;设计可以充分利用增材材料的装置,防止浪费材料的现象出现。

参考文献

Wang H J.

Research status and development tendency of additive manufacturing

[J]. J. Beijing Inf. Sci. Technol. Univ., 2014, 29(3): 20

[本文引用: 1]

王红军.

增材制造的研究现状与发展趋势

[J]. 北京信息科技大学学报, 2014, 29(3): 20

[本文引用: 1]

Lian Y P, Wang P D, Gao J, et al.

Fundamental mechanics problems in metal additive manufacturing: A state-of-art review

[J]. Adv. Mech., 2021, 51: 648

[本文引用: 1]

廉艳平, 王潘丁, 高 杰 .

金属增材制造若干关键力学问题研究进展

[J]. 力学进展, 2021, 51: 648

[本文引用: 1]

Lu B H, Li D C.

Development of the additive manufacturing (3D printing ) technology

[J]. Mach. Build. Auto., 2013, 42(4): 1

[本文引用: 1]

卢秉恒, 李涤尘.

增材制造(3D打印)技术发展

[J]. 机械制造与自动化, 2013, 42(4): 1

[本文引用: 1]

Li D C, Tian X Y, Wang Y X, et al.

Developments of additive manufacturing technology

[J]. Electromach. Mould, 2012, (S1): 20

李涤尘, 田小永, 王永信 .

增材制造技术的发展

[J]. 电加工与模具, 2012, (S1): 20

Yang Y H.

Analysis of classifications and characteristic of additive manufacturing (3D print)

[J]. Adv. Aeronaut. Sci. Eng., 2019, 10: 309

杨延华.

增材制造(3D打印)分类及研究进展

[J]. 航空工程进展, 2019, 10: 309

Zhang H, Yang K.

Overview of the present situation and application of additive manufacturing

[J]. Packag. Eng., 2021, 42(16): 9

张 衡, 杨 可.

增材制造的现状与应用综述

[J]. 包装工程, 2021, 42(16): 9

Harun W S W, Kamariah M S I N, Muhamad N, et al.

A review of powder additive manufacturing processes for metallic biomaterials

[J]. Powder Technol., 2018, 327: 128

DOI      URL     [本文引用: 1]

Sun X F, Song W, Liang J J, et al.

Research and development in materials and processes of superalloy fabricated by laser additive manufacturing

[J]. Acta. Metall. Sin., 2021, 57: 1471

DOI      [本文引用: 1]

The research and development progress of laser additive manufacturing technology in superalloys are summarized in this paper. The technical characteristics and application of additive manufacturing in superalloys, formation mechanism, and the types of microstructure and metallurgical defects are introduced in detail. Moreover, the defect control methods of additive manufacturing of superalloys are summarized from the aspects of laser parameters and composition design, and the direction of laser process parameter optimization and composition optimization is clarified. Finally, the future development trend and research direction of laser additive manufacturing in superalloys are summarized and prospected from the aspects of process optimization and material design.

孙晓峰, 宋 巍, 梁静静 .

激光增材制造高温合金材料与工艺研究进展

[J]. 金属学报, 2021, 57: 1471

DOI      [本文引用: 1]

概述了激光增材制造技术在高温合金中的进展。介绍了增材制造高温合金的技术特点和应用、微观组织及冶金缺陷的形成机制与种类,并从激光参数以及成分设计2个方面综述了增材制造高温合金的缺陷控制方法,明确了激光工艺参数优化与成分优化的方向。最后,从工艺和材料2个方面对激光增材制造在高温合金中的未来发展趋势与研究方向进行了展望。

Lin X, Huang W D.

High performance metal additive manufacturing technology applied in aviation field

[J]. Mater. China, 2015, 34: 684

林 鑫, 黄卫东.

应用于航空领域的金属高性能增材制造技术

[J]. 中国材料进展, 2015, 34: 684

Liu Y, Ren X H, Chang Y L, et al.

Research status of metal additive manufacturing technology

[J]. Hot Work. Technol., 2018, 47(19): 15

刘 勇, 任香会, 常云龙 .

金属增材制造技术的研究现状

[J]. 热加工工艺, 2018, 47(19): 15

Hu M J, Ji L K, Ma Q R, et al.

Overview of laser additive manufacturing technology and status

[J]. Pet. Tubular Goods Instrum., 2019, 5(5): 1

胡美娟, 吉玲康, 马秋荣 .

激光增材制造技术及现状研究

[J]. 石油管材与仪器, 2019, 5(5): 1

Zhang L H, Qian B, Zhang C R, et al.

Summary of development trend of metal additive manufacturing technology

[J]. Mater. Sci Technol., 2022, 30(1): 42

张立浩, 钱 波, 张朝瑞 .

金属增材制造技术发展趋势综述

[J]. 材料科学与工艺, 2022, 30(1): 42

Zhou H L, Liu Y S, Song C B, et al.

Development of 3D printing wire DY590 for additive manufacturing

[J]. Weld. Technol., 2018, 47(6): 66

周海龙, 刘玉双, 宋昌宝 .

增材制造用3D打印丝材DY590的开发

[J]. 焊接技术, 2018, 47(6): 66

Zhang X, Lin X H, Gao X Q, et al.

Refractory metal materials made by additive manufacturing and its application progress

[J]. Powder Metall. Ind., 2022, 32(3): 18

[本文引用: 1]

张 新, 林小辉, 高选乔 .

增材制造难熔金属材料及其应用研究进展

[J]. 粉末冶金工业, 2022, 32(3): 18

[本文引用: 1]

Dang X L, Wang J.

Research status and prospects of additive manufacturing technology at home and abroad

[J]. Aviat. Precis. Manuf. Technol., 2020, 56(2): 35

[本文引用: 1]

党晓玲, 王 婧.

增材制造技术国内外研究现状与展望

[J]. 航空精密制造技术, 2020, 56(2): 35

[本文引用: 1]

Liu W, Li N, Zhou B, et al.

Progress in additive manufacturing on complex structures and high-performance materials

[J]. J. Mech. Eng., 2019, 55(20): 128

DOI     

With the characteristics of point by point melting and layer by layer manufacturing, additive manufacturing (AM), on one hand, can fabricate the three-dimensional complex structure parts rapidly; on the other hand, it can realize the high performance of materials. Based on the technological advantages and important application prospects of AM technology, the recent efforts and advances in AM on complex structures including:lattice structures, large thin-walled structures, complex surface structures, integrated structures; and materials including:iron-based alloys, titanium-based alloys, nickel-based alloys, aluminum-based alloys, intermetallic compounds, functionally gradient materials, ceramics are presented and reviewed. The development trend of AM on structure design, special materials system, new materials, repairing and remanufacturing, data base and standards are also forecasted.

刘 伟, 李 能, 周 标 .

复杂结构与高性能材料增材制造技术进展

[J]. 机械工程学报, 2019, 55(20): 128

Gopan V, Leo Dev Wins K, Surendran A.

Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review

[J]. Cirp J. Manuf. Sci. Technol., 2021, 32: 228

DOI      URL    

Yu L, Liu Y Y, Zhao Y.

Research status of laser additive manufacturing material system for aluminum alloy

[J/OL]. Surf. Technol.,

俞 亮, 刘永业, 赵 阳.

铝合金激光增材制造材料体系研究现状

[J/OL]. 表面技术,

Cao J W, Wang P, Liu Z Y, et al.

Research progress on powder-based laser additive manufacturing technology of ceramics

[J]. J. Inorg. Mater., 37(3), 2022, 37: 241

曹继伟, 王 沛, 刘志远 .

基于粉末成形的激光增材制造陶瓷技术研究进展

[J]. 无机材料学报, 2022, 37: 241

DOI     

陶瓷以其优异的热物理化学性能在航空航天、能源、环保以及生物医疗等领域具有极大的应用潜力。随着这些领域相关技术的快速发展, 其核心零件部件外形结构设计日益复杂、内部组织逐步走向定制化、梯度化。陶瓷具有硬度高、脆性大等特点, 较难通过传统的加工成形方法实现异形结构零件的制造, 最终限制了陶瓷材料的工程应用范围。激光增材制造技术作为一种快速发展的增材制造技术, 在复杂精密陶瓷零部件的制造中具有显著优势: 无模、精度高、响应快以及周期短, 同时能够实现陶瓷零件组织结构灵活调配, 有望解决上述异形结构陶瓷零件成形问题。本文综述了多种基于粉末成形的激光增材制造陶瓷技术: 基于粉末床熔融的激光选区烧结和激光选区熔化; 基于定向能量沉积的激光近净成形技术。主要讨论了各类激光增材陶瓷技术的成形原理与特点, 综述了激光选区烧结技术中陶瓷坯体后处理致密化工艺以及激光选区熔化和激光近净成形技术这两种技术中所打印陶瓷坯体基体裂纹开裂行为分析及其控制方法的研究进展, 对比分析了激光选区烧结、激光选区熔化以及激光近净成形技术在成形陶瓷零件的技术特征, 最后展望了激光增材制造陶瓷技术的未来发展趋势。

Gu D D, Meiners W, Wissenbach K, Poprawe R.

Laser additive manufacturing of metallic components: Materials, processes and mechanisms

[J]. Int. Mater. Rev., 2012, 57: 133

DOI      URL    

Li N, Liu W, Wang Y, et al.

Laser additive manufacturing on metal matrix composites: A review

[J]. Chin. J. Mech. Eng., 2021, 34: 38

DOI      URL    

Pique A, Auyeung R C Y, Kim H, et al.

Laser 3D micro-manufacturing

[J]. J. Phys., 2016, 49D: 223001

Peng Q, Dong S Y, Yan S X, et al.

An overview of defects in laser melting deposition forming products and the corresponding controlling methods

[J]. Mater. Rep., 2018, 32: 2666

[本文引用: 1]

彭 谦, 董世运, 闫世兴 .

激光熔化沉积成形缺陷及其控制方法综述

[J]. 材料导报, 2018, 32: 2666

[本文引用: 1]

Teng S M.

Research progress of wire and arc additive manufacturing (end)

[J]. Nonferrous Met. Process., 2022, 51(2): 9

[本文引用: 1]

滕树满.

电弧熔丝增材制造研究进展(续完)

[J]. 有色金属加工, 2022, 51(2): 9

[本文引用: 1]

Zhang H Z.

Basic study on wire-arc additive manufacturing of magnesium alloy fabricated by cold metal transfer heat source

[D]. Shijiazhuang: Shijiazhuang Tiedao Univercity, 2021

张汉铮.

基于冷金属过渡的镁合金电弧增材制造技术基础研究

[D]. 石家庄: 石家庄铁道大学, 2021

Xiong J, Xue Y G, Chen H, et al.

Status and development prospects of forming control technology in arc-based additive manufacturing

[J]. Electr. Weld. Mach., 2015, 45(9): 45

熊 俊, 薛永刚, 陈 辉 .

电弧增材制造成形控制技术的研究现状与展望

[J]. 电焊机, 2015, 45(9): 45

Xiong J T, Geng H B, Lin X, et al.

Research status of wire and arc additive manufacture and its application in aeronautical manufacturing

[J]. Aeronaut. Manuf. Technol., 2015, 58(23-24): 80

熊江涛, 耿海滨, 林 鑫 .

电弧增材制造研究现状及在航空制造中应用前景

[J]. 航空制造技术, 2015, 58(23-24): 80

Sun J X, Yang K, Wang Q Y, et al.

Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing

[J]. Acta Metall. Sin., 2021, 57: 665

DOI      [本文引用: 1]

5356 aluminum alloy has been widely applied in transportation, aerospace and other fields owing to its low density, excellent fatigue property, and superior corrosion resistance. Aluminum alloy is widely manufactured by the arc additive technique that operates at a fast manufacturing speed with simple equipment and high material utilization. The property of 5356 aluminum alloy is closely related to its microstructure. To better control the property of this alloy for the additive manufacturing of forming parts, it is necessary to study the evolution of its microstructure. In this work, 5356 aluminum alloy forming parts were produced by tungsten inert gas welding (TIG) arc additive manufacturing, and their microstructures and mechanical properties were analyzed. The 5356 aluminum alloy formed by TIG additive manufacturing was composed of α-Al matrix and β(Al3Mg2) phase. As the deposition height increased, the layer microstructure transformed from equiaxed grains to columnar grains and tended to stabilize at thermal equilibrium. The top layer exhibited a dendritic microstructure with serious segregation of the Mg element. The middle and lower microstructures were varied and included equiaxed grains, columnar grains, and a mixture of these, with improved Mg-element segregation. As the deposition height increased, the microhardness in the layer first decreased and then stabilized. The microhardness was larger in the interlayers than in the deposition layers. The pores gathered in the interlayers might explain the lower yield strength of the thin-walled parts than the theoretically calculated value. The tensile strength, yield strength, and elongation were all anisotropic, and the tensile property was better in the transverse than in the longitudinal direction. This result was attributable to pore accumulation between the layers of the thin-walled parts and to the uneven microstructure.

孙佳孝, 杨 可, 王秋雨 .

5356铝合金TIG电弧增材制造组织与力学性能

[J]. 金属学报, 2021, 57: 665

DOI      [本文引用: 1]

采用钨极惰性气体保护焊(TIG)电弧增材制造工艺制备5356铝合金成形件,并对成形件的组织和力学性能进行研究。结果表明,5356铝合金增材制造的相组成为α-Al基体和β(Al<sub>3</sub>Mg<sub>2</sub>)相;随沉积高度增加,沉积层显微组织由等轴晶向柱状晶转变,达到热平衡状态后趋于稳定,这是因为增材制造具有热积累效应;最顶层组织呈现树枝状,且Mg元素偏析严重;中下部组织形态多样,包括等轴晶组织、柱状晶组织及其混合组织,同时Mg元素偏析得到改善。力学性能测试结果显示,随沉积高度的增加,层内显微硬度先降低后趋于稳定,这是因为沉积层组织在增材制造过程中经历逐渐粗化的过程,导致显微硬度下降,达到热平衡状态后显微组织相对稳定,显微硬度也趋于稳定。沉积层层间位置的硬度大于层内,这是因为层间结合处为细小的等轴晶组织。聚集在层间的气孔可能是导致薄壁件屈服强度低于理论计算值的原因。抗拉强度、屈服强度以及伸长率都表现了各向异性,横向拉伸性能优于纵向,这是因为薄壁件层间气孔聚集以及显微组织不均匀。

Wang M.

Study on microstructure and mechanical properties of additive manufactured titanium alloy based on electron beam melting

[D]. Zibo: Shandong University of technology, 2019

[本文引用: 1]

王 铭.

电子束增材制造钛合金组织与力学性能研究

[D]. 淄博: 山东理工大学, 2019

[本文引用: 1]

Wu F, Lin B C, Quan Y Z, et al.

Review on equipment and application of electron-beam based additive manufacturing

[J]. Vacuum, 2022, 59(1): 79

吴 凡, 林博超, 权银洙 .

电子束增材制造设备及应用进展

[J]. 真空, 2022, 59(1): 79

Li S W, Gao Q W, Zhao J, et al.

Research progress and prospect of electron beam freeform fabrication

[J]. Mater. China, 2021, 40: 130

[本文引用: 1]

李绍伟, 郜庆伟, 赵 健 .

电子束熔丝增材制造研究进展及展望

[J]. 中国材料进展, 2021, 40: 130

[本文引用: 1]

Zou S K.

Investigation on the processing and mechanism of friction stir additive manufacturing of high strength aluminum alloy

[D]. Beijing: Beijing Institute of Technology, 2016

[本文引用: 12]

邹胜科.

高强铝合金搅拌摩擦增材制造成形机理和工艺研究

[D]. 北京: 北京理工大学, 2016

[本文引用: 12]

Zhang H, Lin S B, Wu L, et al.

Current progress and prospect of friction stir welding

[J]. Trans. China Weld. Inst., 2003, 24(3): 91

[本文引用: 1]

张 华, 林三宝, 吴 林 .

搅拌摩擦焊研究进展及前景展望

[J]. 焊接学报, 2003, 24(3): 91

[本文引用: 1]

Fu Z H, Huang M H, Zhou Z P, et al.

Research status of friction stir welding

[J]. Weld. Join., 2002, (11): 6

[本文引用: 1]

傅志红, 黄明辉, 周鹏展 .

搅拌摩擦焊及其研究现状

[J]. 焊接, 2002, (11): 6

[本文引用: 1]

Gao Q W, Zhao J, Shu F Y, et al.

Research progress in aluminum alloy additive manufacturing

[J]. J. Mater. Eng., 2019, 47(11): 32

[本文引用: 1]

郜庆伟, 赵 健, 舒凤远 .

铝合金增材制造技术研究进展

[J]. 材料工程, 2019, 47(11): 32

[本文引用: 1]

Hou Y X, Xu R Z, Li H, et al.

Research status and prospect of friction stir welding technology of Al alloy

[J]. Hot Work. Technol., 2019, 48(5): 1

侯艳喜, 徐荣正, 李 慧 .

铝合金搅拌摩擦焊接技术的现状与展望

[J]. 热加工工艺, 2019, 48(5): 1

Threadgill P L, Leonard A J, Shercliff H R, et al.

Friction stir welding of aluminium alloys

[J]. Int. Mater. Rev., 2009, 54: 49

DOI      URL    

Johnson R.

Friction stir welding of magnesium alloys

[J]. Mater. Sci. Forum, 2003, 419-422: 365

DOI      URL    

Li S Y.

Research progress on friction stir welding process of aluminum/magnesium dissimilar alloys

[J]. MW Met. Form., 2022, (6): 52

李首谊.

铝/镁异种合金搅拌摩擦焊工艺研究进展

[J]. 金属加工(热加工), 2022, (6): 52

Yang S Y, Liu D D.

Status and prospect of friction stir welding of magnesium alloys

[J]. Chin. J. Rare Met., 2014, 38: 896

杨素媛, 刘冬冬.

镁合金搅拌摩擦焊的研究现状与展望

[J]. 稀有金属, 2014, 38: 896

Ma Z Y, Shang Q, Ni D R, et al.

Friction stir welding of magnesium alloys: A review

[J]. Acta. Metall. Sin., 2018, 54: 1597

DOI      [本文引用: 1]

In recent years, the increasing application demand for Mg alloys in automobile, rail transport, aviation and aerospace industries brings about the growing prominence of seeking reliable techniques to join Mg alloys. As a solid state welding method, friction stir welding (FSW) exhibits unique advantages in joining Mg alloys, and thus arouses widespread research interest. This paper emphatically reviewed the research status of conventional friction stir butt-welding of Mg alloys, and highlighted the welding process, microstructure evolution, texture characteristics, mechanical behavior and their interaction mechanisms. It was indicated that the texture plays a vital role in FSW joint performance of wrought Mg alloys, which is quite different from that in the FSW Al alloy joints. The specific strong texture formed in the weld is the main factor that gives rise to the impediment to achieving equal-strength joints to base materials. At the same time, some focuses like the weldability and the factors that influence joint performance in other types of FSW like lap welding, spot welding and double-sided welding; the weldability, interface bonding mechanism, joint performance and its affecting factors and optimization methods in dissimilar FSW between Mg alloys and other materials like Mg alloys of other grades, Al alloys and steels, were summarized and discussed. Finally, the future research and development directions in FSW of Mg alloys were prospected.

马宗义, 商 乔, 倪丁瑞 .

镁合金搅拌摩擦焊接的研究现状与展望

[J]. 金属学报, 2018, 54: 1597

DOI      [本文引用: 1]

近年来,镁合金在汽车、轨道交通、航空航天等领域的应用需求快速增长,其可靠连接的重要性愈发突出。作为固相焊接技术,搅拌摩擦焊(FSW)对镁合金焊接具有独特优势,因此得到了广泛关注。本文重点综述了镁合金常规对接FSW的研究进展,就焊接工艺、微观组织演化、织构分布特征、接头力学性能及其之间的相互作用机制进行了详细分析与评述。研究表明,不同于铝合金,在变形镁合金FSW时,织构是影响接头性能的关键因素,焊后形成的特殊强织构分布是导致接头难以达到与母材同等强度的主要原因。同时,对其它焊接形式如搭接焊、点焊、双面焊的可焊性及接头性能的影响因素与变化规律进行了讨论,并对镁合金与其它镁合金、铝合金以及钢之间异种焊的可焊性、界面结合机制、接头性能的影响因素及调控方法进行了评述。最后,对镁合金FSW的未来研究方向进行了展望。

Shi Y W, Tang W.

The principle and application of the friction stir welding

[J]. Electr. Weld. Mach., 2000, 30(1): 6

[本文引用: 1]

史耀武, 唐 伟.

搅拌摩擦焊的原理与应用

[J]. 电焊机, 2000, 30(1): 6

[本文引用: 1]

Wang W F, Tong Y G, Wang C X.

New wielding technology—FSW

[J]. Electr. Weld. Mach., 2004, 34(1): 15

王文峰, 童彦刚, 王纯祥.

一种新型焊接工艺——搅拌摩擦焊

[J]. 电焊机, 2004, 34(1): 15

Zhang W, Chen X G, Zha C S.

A new welding method of ship building—The principle and application of the friction stir welding

[J]. Ship Sci. Technol., 2007, 29(4): 92

张 维, 陈宪刚, 查长松.

新型船舶焊接技术——搅拌摩擦焊的原理与应用

[J]. 舰船科学技术, 2007, 29(4): 92

Shen Z K.

Hybrid friction stir welding technology for steel

[D]. Lanzhou: Lanzhou University of Technology, 2011

申志康.

钢的复合搅拌摩擦焊技术

[D]. 兰州: 兰州理工大学, 2011

Zeng P.

The characteristic of friction stir welding and its application in the aluminum alloy structure of ship

[J]. Ship Ocean Eng., 2010, 39(1): 55

曾 平.

搅拌摩擦焊在船用铝合金结构中的应用

[J]. 船海工程, 2010, 39(1): 55

Luan G H.

Development of friction stir welding in China

[J]. Electr. Weld. Mach., 2004, 34(S1): 98

栾国红.

搅拌摩擦焊在中国的发展

[J]. 电焊机, 2004, 34(S1): 98

Liu R M, Sun C K, Dang Q M, et al.

Research of friction stir welding tool

[J]. Mach. Des. Manuf., 2004, (4): 45

[本文引用: 1]

刘日明, 孙成凯, 党青敏 .

搅拌摩擦焊工具的研究现状

[J]. 机械设计与制造, 2004, (4): 45

[本文引用: 1]

Padhy G K, Wu C S, Gao S.

Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review

[J]. J. Mater. Sci. Techno., 2018, 34: 1

[本文引用: 1]

Xue F T, Liu H B.

The overview of friction stir additive manufacturing

[J]. Mod. Manuf. Eng., 2019, (4): 33

[本文引用: 2]

薛凤桐, 刘海滨.

摩擦搅拌增材制造发展概述

[J]. 现代制造工程, 2019, (4): 33

[本文引用: 2]

Shi L, Li Y, Xiao Y C, et al.

Research progress of metal solid phase additive manufacturing based on friction stir

[J]. J. Mater. Eng., 2022, 50(1): 1

[本文引用: 1]

石 磊, 李 阳, 肖亦辰 .

基于搅拌摩擦的金属固相增材制造研究进展

[J]. 材料工程, 2022, 50(1): 1

[本文引用: 1]

Rathee S, Srivastava M, Pandey P M, et al.

Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies

[J]. Cirp J. Manuf. Sci. Tec., 2021, 35: 560

[本文引用: 2]

Mishra R S, Haridas R S, Agrawal P.

Friction stir-based additive manufacturing

[J]. Sci. Technol. Weld. Join., 2022, 27: 141

DOI      URL     [本文引用: 1]

Gao H Y, Li H J.

Friction additive manufacturing technology: A state-of-the-art survey

[J]. Adv. Mech. Eng., 2021, 13(7): 1

Seidi E, Miller S F, Carlson B E.

Friction surfacing deposition by consumable tools

[J]. J. Manuf. Sci. Eng., 2021, 143: 120801

DOI      URL     [本文引用: 1]

Liu X C, Ni Z H, Pei X J, et al.

An additive manufacturing device based on hot wire friction micro-forging and the application method

[P]. Chin. Pat, 202110386023.0, 2021

[本文引用: 4]

刘小超, 倪中华, 裴宪军 .

一种基于热丝摩擦微锻的增材制造装置及制造方法

[P]. 中国专利, 202110386023.0, 2021)

[本文引用: 4]

Wan L, Chen S H, Huang T F, et al.

A device and method for FSW additive manufacturing using static shoulder cavity

[P]. Chin. Pat, 202011448053.1, 2021

[本文引用: 1]

万 龙, 陈思浩, 黄体方 .

一种利用静止轴肩空腔进行FSW增材制造的装置及方法

[P]. 中国专利: 202011448053.1, 2021)

[本文引用: 1]

Zhao H X.

Wire filling friction stir additive manufacturing device and additive manufacturing method

[P]. Chin. Pat, 201810235551.4, 2019

[本文引用: 5]

赵华夏.

一种填丝搅拌摩擦增材制造装置及增材制造方法

[P]. 中国专利, 201810235551.4, 2019)

[本文引用: 5]

Shi L, Li Y, Xiao Y C, et al.

A wire-filled static shoulder friction stir welding and additive manufacturing device and method

[P]. Chin. Pat, 202110160985.4, 2021

[本文引用: 5]

石 磊, 李 阳, 肖亦辰 .

一种填丝静轴肩搅拌摩擦焊接与增材制造装置及方法

[P]. 中国专利, 202110160985.4, 2021)

[本文引用: 5]

Zhang Z, Yuan H L, Tan Z J.

A new friction stir additive manufacturing machine

[P]. Chin. Pat, 201810229291. X, 2018

[本文引用: 1]

张 昭, 苑红磊, 谭治军 .

一种新型的搅拌摩擦增材制造机

[P]. 中国专利, 201810229291.X, 2018)

[本文引用: 1]

Huang Y X, Zou M D, Meng X C, et al.

Friction head and friction stir additive manufacturing method with adjustable components and synchronously feeding material

[P]. Chin. Pat, 201910550014.3, 2019

[本文引用: 9]

黄永宪, 邹明达, 孟祥晨 .

一种组分可调同步送料的摩擦头及摩擦增材制造方法

[P]. 中国专利, 201910550014.3, 2019)

[本文引用: 9]

Rodriguez R I, Bruno Z S.

Methods and containers for loading raw material rods into additive friction stir deposition machines

[P]. Chin. Pat, 202010806557. X, 2021

[本文引用: 2]

罗盖·I·罗德里格斯, 布鲁诺·萨莫拉诺·森德罗斯.

用于将原料棒装载到增材摩擦搅拌沉积机中的方法和容器

[P]. 中国专利, 202010806557.X, 2021)

[本文引用: 2]

Zhao H X, Wang W B.

Friction flow additive manufacturing device and additive manufacturing method

[P]. Chin. Pat, 201810234931.6, 2019

[本文引用: 5]

赵华夏, 王卫兵.

一种流动摩擦增材制造装置及增材制造方法

[P]. 中国专利, 201810234931.6, 2019)

[本文引用: 5]

Wan L, Wen Q, Huang T F.

A additive manufacturing mechanism and manufacturing method based on short rod materials

[P]. Chin. Pat, 202110172383.0, 2021

[本文引用: 1]

万 龙, 温 琦, 黄体方.

一种基于短棒物料增材制造机构及制造方法

[P]. 中国专利, 202110172383.0, 2021)

[本文引用: 1]

Huang Y X, Xie Y M, Meng X C.

Continuously feeding friction stir additive manufacturing device and method

[P]. Chin. Pat, 202110411108. X, 2021

[本文引用: 8]

黄永宪, 谢聿铭, 孟祥晨.

一种连续进给送料搅拌摩擦增材制造装置及增材制造方法

[P]. 中国专利, 202110411108.X, 2021)

[本文引用: 8]

Liu H J, Liu X Q, Hu Y Y, et al.

A method of friction stir welding additive manufacturing bar

[P]. Chin. Pat, 201510955775.9, 2016

[本文引用: 1]

刘会杰, 刘向前, 胡琰莹 .

一种搅拌摩擦焊增材制造棒材的方法

[P]. 中国专利, 201510955775.9, 2016)

[本文引用: 1]

Shu X, Wan L, Lv Z L.

A granule friction stir additive manufacturing device and method

[P]. Chin. Pat, 202110284601. X, 2021

[本文引用: 8]

树 西, 万 龙, 吕宗亮.

一种颗粒式搅拌摩擦增材制造装置及方法

[P]. 中国专利, 202110284601.X, 2021)

[本文引用: 8]

Wan L, Liu J L, Lv Z L.

A semi-solid additive manufacturing device and method

[P]. Chin. Pat, 202011606242.7, 2021

[本文引用: 1]

万 龙, 刘景麟, 吕宗亮.

一种半固态增材制造装置及方法

[P]. 中国专利, 202011606242.7, 2021)

[本文引用: 1]

Ji S D, Li M S, Yue Y M, et al.

A device and method for radial additive manufacturing of friction stir welding

[P]. Chin. Pat, 201910915488.3, 2020

[本文引用: 9]

姬书得, 李鸣申, 岳玉梅 .

一种搅拌摩擦焊径向增材制造的装置与方法

[P]. 中国专利, 201910915488.3, 2020)

[本文引用: 9]

Seidi E, Miller S F.

A novel approach to friction surfacing: Experimental analysis of deposition from radial surface of a consumable tool

[J]. Coatings, 2020, 10: 1016

DOI      URL     [本文引用: 1]

Sun C W.

Study on technology and microstructure performance of side friction stir additive manufacturing

[D]. Harbin: Northeast Forestry University, 2020

[本文引用: 10]

孙朝伟.

侧向搅拌摩擦增材制造工艺与组织性能研究

[D]. 哈尔滨: 东北林业大学, 2020

[本文引用: 10]

Hua P, Li R, Xiao M, et al.

A method of additive manufacturing by consumable stirring friction tools

[P]. Chin. Pat, 201711019260.3, 2018

[本文引用: 5]

华 鹏, 李 枘, 肖 萌 .

一种通过消耗型搅拌摩擦工具增材制造的方法

[P]. 中国专利, 201711019260.3, 2018)

[本文引用: 5]

Fu X R, Xing L, Huang C P, et al.

Microstructure of 2024 aluminum alloy by stationary shoulder friction stir additive manufacturing

[J]. Chin. J. Nonferrous Met., 2019, 29: 1591

[本文引用: 1]

傅徐荣, 邢 丽, 黄春平 .

静轴肩搅拌摩擦增材制造2024铝合金的组织特征

[J]. 中国有色金属学报, 2019, 29: 1591

[本文引用: 1]

Huang B.

Study on additive manufacturing technology based on the principle of stationary shoulder friction stir welding

[D]. Nanchang: Nanchang Hangkong University, 2016

[本文引用: 6]

黄 斌.

基于静轴肩搅拌摩擦焊的增材制造技术研究

[D]. 南昌: 南昌航空大学, 2016

[本文引用: 6]

He C S, Wei J X, Li Y, et al.

A cooling friction stir additive manufacturing device and method

[P]. Chin. Pat, 201811509290.7, 2019

[本文引用: 8]

何长树, 韦景勋, 李 颖 .

一种施加冷却的搅拌摩擦增材制造装置及方法

[P]. 中国专利, 201811509290.7, 2019)

[本文引用: 8]

Xu N, Wang H F, Jiang D, et al.

A stirring tool for friction stir additive manufacturing

[P]. Chin. Pat, 201922157857.5, 2020

[本文引用: 2]

许 诺, 汪洪峰, 姜 迪 .

一种用于搅拌摩擦增材制造的搅拌头

[P]. 中国专利, 201922157857.5, 2020)

[本文引用: 2]

Zhang H J, Liu X, Kong X L, et al.

A friction stir additive manufacturing method for preset heterogeneous metal interlayers

[P]. Chin. Pat, 202110354228.0, 2021

[本文引用: 5]

张会杰, 刘 旭, 孔旭亮 .

一种预置异质金属夹层的搅拌摩擦增材制造方法

[P]. 中国专利, 202110354228.0, 2021)

[本文引用: 5]

Dilip J J S, Rafi H K, Ram G D J.

A new additive manufacturing process based on friction deposition

[J]. Trans. Indian Inst. Met., 2011, 64: 27

DOI      URL     [本文引用: 4]

Griffiths R J, Petersen D T, Garcia D, et al.

Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy

[J]. Appl. Sci., 2019, 9: 3486

DOI      URL     [本文引用: 1]

Fu X R.

Study on microstructure and properties of 2024 aluminum alloy by stationary shoulder frictional stir additive manufacturing

[D]. Nanchang: Nanchang Hangkong University, 2018

[本文引用: 4]

傅徐荣.

2024铝合金静轴肩搅拌摩擦增材组织及性能研究

[D]. 南昌: 南昌航空大学, 2018

[本文引用: 4]

Gu T.

Microstructure and properties of high strength aluminum alloy Al 2024 laser additive manufacturing

[D]. Harbin: Harbin Institute of Technology, 2019

[本文引用: 13]

谷 涛.

高强度铝合金Al 2024激光增材制造组织与性能研究

[D]. 哈尔滨: 哈尔滨工业大学, 2019

[本文引用: 13]

Qi Z W, Qi B J, Cong B Q, et al.

Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components: As-deposited and post heat-treated

[J]. J. Manuf. Process., 2019, 40: 27

DOI      URL     [本文引用: 11]

Wei J X.

The microstructure and properties adjustment of friction stir additive manufactured build for 7N01 aluminum alloy

[D]. Shenyang: Northeastern university, 2019

[本文引用: 1]

韦景勋.

7N01铝合金搅拌摩擦增材体显微组织与性能的控制

[D]. 沈阳: 东北大学, 2019

[本文引用: 1]

Wang N Q.

Basic research on selective laser melting additive manufacturing process of NZ30K magnesium alloy

[D]. Shanghai: Shanghai Jiao Tong University, 2020

[本文引用: 1]

王南清.

NZ30K镁合金激光选区熔化增材制造成型工艺基础研究

[D]. 上海: 上海交通大学, 2020

[本文引用: 1]

Guo Y M.

The laser additive manufacturing technology of aluminum alloy with melting wire

[D]. Nanjing: Nanjing University of Science and Technology, 2018

[本文引用: 2]

郭一蒙.

铝合金激光熔丝增材制造工艺研究

[D]. 南京: 南京理工大学, 2018

[本文引用: 2]

Liang W Q, Ren X H, Yu Z T, et al.

Microstructure and mechanical properties of wire arc additive manufacturing of AZ31 magnesium alloy

[J/OL]. Mater. Sci. Technol.,

[本文引用: 2]

梁文奇, 任香会, 于振涛 .

电弧增材制造AZ31镁合金组织与力学性能分析

[J/OL] 材料科学与工艺,

[本文引用: 2]

Zhou G S.

Study on CMT arc additive manufacturing technology and microstructure and properties for 5556 aluminum alloy

[D]. Shenyang: Shenyang University, 2021

[本文引用: 4]

周桂申.

5556铝合金CMT电弧增材制造技术及性能研究

[D]. 沈阳: 沈阳大学, 2021

[本文引用: 4]

/