Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 367-376    DOI: 10.11900/0412.1961.2022.00039
  研究论文 本期目录 | 过刊浏览 |
δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响
陈胜虎1, 王琪玉1,2, 姜海昌1, 戎利建1()
1中国科学院金属研究所 中国科学院核用结构材料与安全评价重点实验室 沈阳 110016
2中国科学技术大学 材料科学与工程学院 沈阳 110016
Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application
CHEN Shenghu1, WANG Qiyu1,2, JIANG Haichang1, RONG Lijian1()
1CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
Shenghu CHEN, Qiyu WANG, Haichang JIANG, Lijian RONG. Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application[J]. Acta Metall Sin, 2024, 60(3): 367-376.

全文: PDF(3849 KB)   HTML
摘要: 

奥氏体不锈钢中δ-铁素体的存在显著影响热加工过程中奥氏体晶粒度的控制,造成晶粒不均匀现象,关于δ-铁素体对奥氏体动态再结晶行为的影响机制尚不清楚。本工作利用Gleeble-3800热力模拟试验机在1423 K、0.1 s-1条件下进行了铸态样品和均质化处理态样品的热压缩实验,结合SEM、EBSD和TEM等研究了δ-铁素体对热变形行为和动态再结晶的影响。结果表明:1473 K均质化处理14 h可基本消除δ-铁素体,同时伴随着奥氏体晶粒的显著长大,计算表明δ-铁素体向奥氏体的转变速率主要受控于Cr在奥氏体中的扩散。铸态样品变形过程中,δ-铁素体内部、δ-铁素体/奥氏体界面处的塑性变形先于奥氏体相,高温下较软δ-铁素体的存在,造成铸态样品的流变应力明显低于均质化处理态无δ-铁素体样品。随着变形的进行,δ-铁素体易发生动态回复,动态回复引起的软化导致流变应力显著下降。均质化处理态样品的动态再结晶机制是原始奥氏体晶界弓出形核的不连续动态再结晶。而δ-铁素体的存在促进了δ-铁素体/奥氏体界面附近奥氏体的动态再结晶,其机制为连续动态再结晶。铸态样品中的原始奥氏体晶界为不连续动态再结晶的形核位置,2种动态再结晶机制的耦合作用使得铸态样品的动态再结晶程度显著高于均质化处理态样品。

关键词 奥氏体不锈钢δ-铁素体均质化处理热变形动态再结晶    
Abstract

The sodium-cooled fast reactor is the most mature reactor among generation-IV nuclear reactors. A carbon/nitrogen-controlled 316KD austenitic stainless steel has been developed for the construction of pressure vessels and internals in Chinese CFR600 demonstration reactor. During their industrial production, δ-ferrite is present in large-scale billets because of the combined effect of non-equilibrium segregation and low cooling rate. For large-scale billets containing δ-ferrite, inhomogeneous grain-size distributions are observed in the product after hot working. Extensive studies on the recrystallization of the austenite phase in austenitic stainless steels during hot deformation were conducted. However, the effect of δ-ferrite on the recrystallization behavior of the austenite phase remains unclear. In this study, uniaxial hot compression tests of 316KD austenitic stainless steels involving as-cast and homogenized conditions were conducted at 1423 K and 0.1 s-1 using a Gleeble-3800 thermal-mechanical simulator, and the effect of δ-ferrite on hot deformation and recrystallization was analyzed by SEM, EBSD, and TEM. Results showed that δ-ferrite could be nearly eliminated through δ-ferrite→austenite transformation after homogenization at 1473 K for 14 h, whereas austenite grain showed evident growth. The elimination of δ-ferrite was a Cr-diffusion-controlled process through kinetic analysis. Plastic deformation occurred preferentially in δ-ferrite and at the δ-ferrite/austenite interface, and subsequently in austenite during hot deformation. The flow stress of as-cast samples was much lower than that of homogenized samples at the same strain because of the presence of soft δ-ferrite. Dynamic recovery occurred easier in δ-ferrite, and the resulting dynamic softening remarkably reduced flow stress with an increase in strain. Discontinuous dynamic recrystallization characterized by original austenite grain boundary bulging was the dominant mechanism in homogenized samples. However, the presence of δ-ferrite promoted the occurrence of continuous dynamic recrystallization in austenite near the δ-ferrite/austenite interface in as-cast samples. Compared with the homogenized samples, a higher degree of recrystallization was observed in as-cast samples because of the combined effects of continuous dynamic recrystallization and discontinuous dynamic recrystallization.

Key wordsaustenitic stainless steel    δ-ferrite    homogenization treatment    hot deformation    dynamic recrystallization
收稿日期: 2022-01-27     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51871218);中科院青年创新促进会项目(2018227);中核集团青年英才计划项目
通讯作者: 戎利建,ljrong@imr.ac.cn,主要从事特种合金研究
Corresponding author: RONG Lijian, professor, Tel: (024)23971979, E-mail: ljrong@imr.ac.cn
作者简介: 陈胜虎,男,1986年生,研究员,博士
图1  180 mm厚316KD奥氏体不锈钢铸坯中δ-铁素体含量沿厚度方向的分布曲线和心部位置微观组织
图2  铸坯心部样品的δ-铁素体含量与均质化处理温度和保温时间的关系曲线
图3  铸坯心部样品经1473 K均质化处理2、4和14 h后的微观组织
图4  lg{ln[1 / (1 - X(t))]}与lg{lnt}以及lnk与1 / T之间的拟合关系曲线
T / Knkr
13231.1738.77 × 10-60.993
14231.0794.82 × 10-50.984
14731.0358.76 × 10-50.995
表1  δ-铁素体等温转变动力学方程中时间指数(n)和反应速率常数(k)的计算值
图5  铸态和均质化处理态样品经1423 K、0.1 s-1压缩变形时的真应力-真应变曲线
图6  铸态样品经不同变形量压缩后的EBSD晶界特征、局域取向差分布和晶粒取向图
图7  均质化处理态样品经不同变形量压缩后的EBSD晶界特征分布
图8  铸态样品经应变为0.36压缩变形后的EBSD晶界特征分布
图9  铸态样品经应变为0.36压缩变形后的TEM像及元素分布图
图10  δ-铁素体/奥氏体界面处奥氏体的动态再结晶过程示意图
1 Sofu T. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents [J]. Nucl. Eng. Technol., 2015, 47: 227
doi: 10.1016/j.net.2015.03.004
2 Dai Y N, Zheng X T, Ding P S. Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications [J]. Nucl. Eng. Technol., 2021, 53: 3474
doi: 10.1016/j.net.2021.05.021
3 Aoto K, Dufour P, Yang H Y, et al. A summary of sodium-cooled fast reactor development [J]. Prog. Nucl. Energy, 2014, 77: 247
doi: 10.1016/j.pnucene.2014.05.008
4 Yan C G, Li Y P, Wang M Z. Type 316 austenitic steels for reactor vessel and internals in sodium fast reactors and their creep rupture properties [J]. J. Iron Steel Res., 2018, 30: 935
4 燕春光, 李雅平, 王明政. 钠冷快堆堆容器堆内构件用316型不锈钢及其持久断裂性能 [J]. 钢铁研究学报, 2018, 30: 935
5 Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Met. Prog., 1949, 56: 680
6 Delong W T. Ferrite in austenitic stainless steel weld metal [J]. Weld. J., 1974, 53: 273s
7 Espy R H. Weldability of nitrogen-strengthened stainless steels [J]. Weld. J., 1982, 61: 149s
8 Wang Q Y, Chen S H, Rong L J. δ-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
9 Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
doi: 10.1016/j.jmst.2021.10.008
10 Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
doi: 10.1016/j.jmst.2017.01.025
11 Zhou Y H, Liu Y C, Zhou X S, et al. Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel [J]. J. Mater. Res., 2015, 30: 2090
doi: 10.1557/jmr.2015.168
12 Guo B F, Ji H P, Liu X G, et al. Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel [J]. J. Mater. Eng. Perform., 2012, 21: 1455
doi: 10.1007/s11665-011-0031-0
13 Mataya M C, Nilsson E R, Brown E L, et al. Hot working and recrystallization of as-cast 316L [J]. Metall. Mater. Trans., 2003, 34A: 1683
14 Dehghan-Manshadi A, Barnett M R, Hodgson P D. Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization [J]. Metall. Mater. Trans., 2008, 39A: 1359
15 Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel [J]. Mater. Charact., 2016, 118: 92
doi: 10.1016/j.matchar.2016.05.015
16 Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel [J]. Acta Metall. Sin., 2010, 46: 52
16 陈 雷, 王龙妹, 杜晓建 等. 2205双相不锈钢的高温变形行为 [J]. 金属学报, 2010, 46: 52
17 Ni K, Yang Y H, Cao J C, et al. Softening behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N low nickel-type duplex stainless steel during hot compression deformation under large strain [J]. Acta Metall. Sin., 2021, 57: 224
doi: 10.11900/0412.1961.2020.00218
17 倪 珂, 杨银辉, 曹建春 等. 18.7Cr-1.0Ni-5.8Mn-0.2N节Ni型双相不锈钢的大变形热压缩软化行为 [J]. 金属学报, 2021, 57: 224
18 Fang Y L, Liu Z Y, Zhang W N, et al. Microstructure evolution of lean duplex stainless steel 2101 during hot deformation [J]. Acta Metall. Sin., 2010, 46: 641
doi: 10.3724/SP.J.1037.2010.00641
18 方轶琉, 刘振宇, 张维娜 等. 节约型双相不锈钢2101高温变形过程中微观组织演化 [J]. 金属学报, 2010, 46: 641
doi: 10.3724/SP.J.1037.2009.00856
19 Dehghan-Manshadi A, Hodgson P D. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite [J]. J. Mater. Sci., 2008, 43: 6272
doi: 10.1007/s10853-008-2907-4
20 Dehghan-Manshadi A, Barnett M R, Hodgson P D. Microstructural evolution during hot deformation of duplex stainless steel [J]. Mater. Sci. Technol., 2007, 23: 1478
doi: 10.1179/174328407X239019
21 Ruitenberg G, Woldt E, Petford-Long A K. Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions [J]. Thermochim. Acta, 2001, 378: 97
doi: 10.1016/S0040-6031(01)00584-6
22 Ham F S. Theory of diffusion-limited precipitation [J]. J. Phys. Chem. Solids, 1958, 6: 335
doi: 10.1016/0022-3697(58)90053-2
23 Alberry P J, Haworth C W. Interdiffusion of Cr, Mo, and W in iron [J]. Met. Sci., 1974, 8: 407
doi: 10.1179/msc.1974.8.1.407
24 Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior [J]. Acta Mater., 1998, 46: 69
doi: 10.1016/S1359-6454(97)00233-4
25 Piñol-Juez A, Iza-Mendia A, Gutiérrez I. δ /γ Interface bondary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel [J]. Metall. Mater. Trans., 2000, 31A: 1671
26 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
27 Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K [J]. Acta Mater., 2015, 82: 244
doi: 10.1016/j.actamat.2014.09.023
28 Arun Babu K, Mozumder Y H, Saha R, et al. Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition [J]. Mater. Sci. Eng., 2018, A734: 269
29 Dehghan-Manshadi A, Hodgson P D. Dependency of recrystallization mechanism to the initial grain size [J]. Metall. Mater. Trans., 2008, 39A: 2830
30 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685
doi: 10.1016/S1359-6454(03)00078-8
31 Gourdet S, Montheillet F. Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals [J]. Acta Mater., 2002, 50: 2801
doi: 10.1016/S1359-6454(02)00098-8
[1] 侯志远, 刘威峰, 徐斌, 孙明月, 时婧, 任少飞. M50轴承钢热变形过程中孔洞形成及演化机制[J]. 金属学报, 2024, 60(1): 57-68.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[6] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[8] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[9] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[10] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[11] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[12] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[13] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[14] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[15] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.