|
|
δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响 |
陈胜虎1, 王琪玉1,2, 姜海昌1, 戎利建1( ) |
1中国科学院金属研究所 中国科学院核用结构材料与安全评价重点实验室 沈阳 110016 2中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application |
CHEN Shenghu1, WANG Qiyu1,2, JIANG Haichang1, RONG Lijian1( ) |
1CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
Shenghu CHEN,
Qiyu WANG,
Haichang JIANG,
Lijian RONG.
Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application[J]. Acta Metall Sin, 2024, 60(3): 367-376.
1 |
Sofu T. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents [J]. Nucl. Eng. Technol., 2015, 47: 227
doi: 10.1016/j.net.2015.03.004
|
2 |
Dai Y N, Zheng X T, Ding P S. Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications [J]. Nucl. Eng. Technol., 2021, 53: 3474
doi: 10.1016/j.net.2021.05.021
|
3 |
Aoto K, Dufour P, Yang H Y, et al. A summary of sodium-cooled fast reactor development [J]. Prog. Nucl. Energy, 2014, 77: 247
doi: 10.1016/j.pnucene.2014.05.008
|
4 |
Yan C G, Li Y P, Wang M Z. Type 316 austenitic steels for reactor vessel and internals in sodium fast reactors and their creep rupture properties [J]. J. Iron Steel Res., 2018, 30: 935
|
4 |
燕春光, 李雅平, 王明政. 钠冷快堆堆容器堆内构件用316型不锈钢及其持久断裂性能 [J]. 钢铁研究学报, 2018, 30: 935
|
5 |
Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Met. Prog., 1949, 56: 680
|
6 |
Delong W T. Ferrite in austenitic stainless steel weld metal [J]. Weld. J., 1974, 53: 273s
|
7 |
Espy R H. Weldability of nitrogen-strengthened stainless steels [J]. Weld. J., 1982, 61: 149s
|
8 |
Wang Q Y, Chen S H, Rong L J. δ-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
|
9 |
Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
doi: 10.1016/j.jmst.2021.10.008
|
10 |
Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
doi: 10.1016/j.jmst.2017.01.025
|
11 |
Zhou Y H, Liu Y C, Zhou X S, et al. Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel [J]. J. Mater. Res., 2015, 30: 2090
doi: 10.1557/jmr.2015.168
|
12 |
Guo B F, Ji H P, Liu X G, et al. Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel [J]. J. Mater. Eng. Perform., 2012, 21: 1455
doi: 10.1007/s11665-011-0031-0
|
13 |
Mataya M C, Nilsson E R, Brown E L, et al. Hot working and recrystallization of as-cast 316L [J]. Metall. Mater. Trans., 2003, 34A: 1683
|
14 |
Dehghan-Manshadi A, Barnett M R, Hodgson P D. Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization [J]. Metall. Mater. Trans., 2008, 39A: 1359
|
15 |
Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel [J]. Mater. Charact., 2016, 118: 92
doi: 10.1016/j.matchar.2016.05.015
|
16 |
Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel [J]. Acta Metall. Sin., 2010, 46: 52
|
16 |
陈 雷, 王龙妹, 杜晓建 等. 2205双相不锈钢的高温变形行为 [J]. 金属学报, 2010, 46: 52
|
17 |
Ni K, Yang Y H, Cao J C, et al. Softening behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N low nickel-type duplex stainless steel during hot compression deformation under large strain [J]. Acta Metall. Sin., 2021, 57: 224
doi: 10.11900/0412.1961.2020.00218
|
17 |
倪 珂, 杨银辉, 曹建春 等. 18.7Cr-1.0Ni-5.8Mn-0.2N节Ni型双相不锈钢的大变形热压缩软化行为 [J]. 金属学报, 2021, 57: 224
|
18 |
Fang Y L, Liu Z Y, Zhang W N, et al. Microstructure evolution of lean duplex stainless steel 2101 during hot deformation [J]. Acta Metall. Sin., 2010, 46: 641
doi: 10.3724/SP.J.1037.2010.00641
|
18 |
方轶琉, 刘振宇, 张维娜 等. 节约型双相不锈钢2101高温变形过程中微观组织演化 [J]. 金属学报, 2010, 46: 641
doi: 10.3724/SP.J.1037.2009.00856
|
19 |
Dehghan-Manshadi A, Hodgson P D. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite [J]. J. Mater. Sci., 2008, 43: 6272
doi: 10.1007/s10853-008-2907-4
|
20 |
Dehghan-Manshadi A, Barnett M R, Hodgson P D. Microstructural evolution during hot deformation of duplex stainless steel [J]. Mater. Sci. Technol., 2007, 23: 1478
doi: 10.1179/174328407X239019
|
21 |
Ruitenberg G, Woldt E, Petford-Long A K. Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions [J]. Thermochim. Acta, 2001, 378: 97
doi: 10.1016/S0040-6031(01)00584-6
|
22 |
Ham F S. Theory of diffusion-limited precipitation [J]. J. Phys. Chem. Solids, 1958, 6: 335
doi: 10.1016/0022-3697(58)90053-2
|
23 |
Alberry P J, Haworth C W. Interdiffusion of Cr, Mo, and W in iron [J]. Met. Sci., 1974, 8: 407
doi: 10.1179/msc.1974.8.1.407
|
24 |
Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior [J]. Acta Mater., 1998, 46: 69
doi: 10.1016/S1359-6454(97)00233-4
|
25 |
Piñol-Juez A, Iza-Mendia A, Gutiérrez I. δ /γ Interface bondary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel [J]. Metall. Mater. Trans., 2000, 31A: 1671
|
26 |
Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
|
27 |
Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K [J]. Acta Mater., 2015, 82: 244
doi: 10.1016/j.actamat.2014.09.023
|
28 |
Arun Babu K, Mozumder Y H, Saha R, et al. Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition [J]. Mater. Sci. Eng., 2018, A734: 269
|
29 |
Dehghan-Manshadi A, Hodgson P D. Dependency of recrystallization mechanism to the initial grain size [J]. Metall. Mater. Trans., 2008, 39A: 2830
|
30 |
Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685
doi: 10.1016/S1359-6454(03)00078-8
|
31 |
Gourdet S, Montheillet F. Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals [J]. Acta Mater., 2002, 50: 2801
doi: 10.1016/S1359-6454(02)00098-8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|