Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 377-387    DOI: 10.11900/0412.1961.2022.00406
  研究论文 本期目录 | 过刊浏览 |
初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响
杨平(), 马丹丹, 顾晨, 顾新福
北京科技大学 材料科学与工程学院 北京 100083
Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel
YANG Ping(), MA Dandan, GU Chen, GU Xinfu
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
Ping YANG, Dandan MA, Chen GU, Xinfu GU. Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel[J]. Acta Metall Sin, 2024, 60(3): 377-387.

全文: PDF(4234 KB)   HTML
摘要: 

有相变的低牌号电工钢连铸坯中普遍存在的{100}柱状晶显示了连铸过程中强烈的相变滞后及相变被抑制的特性。这时,热轧加热温度的变化会造成热轧组织与织构的多样性,并对后续冷轧退火组织与织构产生影响。本工作在前期初步考察热轧工艺对工业低牌号电工钢相变织构影响的基础上,结合连铸坯中柱状晶相变滞后现象,提出了亚稳态铁素体热轧保留{100}织构从而提高磁性能的思路,进一步考察了冷轧前不同初始组织及冷轧压下量对相变织构的影响,并探索了织构遗传的规律。结果表明,低温加热热轧的热轧板中存在较多{100}取向的形变晶粒,冷轧及相变退火后显示了明显的{100}织构遗传规律,有效改善了磁性能。压下量的提高削弱了{100}相变织构。分析认为,虽然工业低牌号电工钢中的Al、P元素阻碍了表面效应诱发的{100}相变织构,但低温热轧产生有利的初始{100}织构促进了最终遗传型相变织构。此外,高退火温度下得到的相变织构仍优于低退火温度下得到的再结晶织构。

关键词 低牌号电工钢相变柱状晶织构磁性轧制    
Abstract

Compared with high-grade electrical steel, low-grade electrical steel has the advantages of low cost and high production quantity but low profits. Therefore, researchers often focus on studying high-grade electrical steel without phase transformation. The microstructure evolution of low-grade electrical steel is more complicated compared to high-grade steel due to the three transformation stages— casting, hot rolling, and final annealing—that are present between austenite and ferrite during their processing. During continuous casting, the <100> columnar grains commonly formed in the low-grade electrical steel cast slabs with phase transformation illustrate the characteristics of the pronounced transformation delay and suppression. In such conditions, the change in hot rolling temperature will cause diversity in hot-rolled microstructures and textures and affect the subsequent cold rolling and annealing microstructure and texture. Based on the previous studies on the effect of hot rolling processes on the transformation texture of industrial low-grade electrical steel and the observation of the transformation delay and suppression of columnar grains in cast slabs, this work further investigates the influence of the initial microstructures before cold rolling and cold rolling reduction on the transformation texture and explores the law of texture inheritance. In particular, the idea of retaining {100} texture using metastable ferrite hot rolling is proposed to improve magnetic properties. The results show that there are more {100} deformed grains in the hot-rolled plate heated at low temperature, and the {100} texture inheritance is obvious after cold rolling and transformation annealing, which effectively improves the magnetic properties. The {100} transformation texture is weakened with the increase in rolling reduction because the initial {100} grains gradually disappear with increasing rolling reduction. An analysis shows that although the {100} transformation texture induced by the surface effect is hindered by the alloying Al and P elements in the used industrial electrical steel, the favorable initial {100} texture produced using low-temperature hot rolling promotes the memory-type transformation texture. In addition, the transformation texture obtained at a high annealing temperature is still better than the recrystallization texture obtained at a low annealing temperature. The significance of these results lies in the possible future practice of enhancing {100} texture in hot rolled plate by metastable ferrite rolling to improve magnetic properties in final annealed sheets.

Key wordslow-grade electrical steel    phase transformation    columnar crystal    texture    magnetic property    rolling
收稿日期: 2022-08-20     
ZTFLH:  TG111.5  
基金资助:国家自然科学基金项目(51931002)
通讯作者: 杨 平,yangp@mater.ustb.edu.cn,主要从事金属形变、再结晶及相变过程织构形成原理及控制的研究
Corresponding author: YANG Ping, professor, Tel: (010)82376968, E-mail: yangp@mater.ustb.edu.cn
作者简介: 杨 平,男,1959年生,教授,博士
图1  样品轧制及退火工艺流程图
图2  不同热轧工艺下样品的EBSD取向成像图及取向分布函数(ODF)图(φ2 = 45°)[1]
图3  4种热轧样品和1种柱状晶初始样品经冷轧(0.50 mm、75%压下量)后1100℃保温7 min相变退火的EBSD取向成像图和ODF图(φ2 = 45°)
图4  4种热轧样品和1种柱状晶初始样品经冷轧(0.50 mm、75%压下量)后1100℃保温7 min相变退火组织的平均晶粒尺寸
图5  4种热轧样品和1种柱状晶初始样品经冷轧(0.20 mm、90%冷轧压下量)后1100℃保温7 min相变退火后的EBSD取向成像图和ODF图(φ2 = 45°)
图6  4种热轧样品和1种柱状晶初始样品经冷轧(0.20 mm、90%冷轧压下量)后1100℃保温7 min相变退火组织的平均晶粒尺寸
图7  低温热轧样品(C工艺)冷轧后在950℃退火5 min的EBSD取向成像图与ODF图(φ2 = 45°)
图8  低温热轧样品(D工艺)冷轧后在950℃退火5 min的EBSD取向成像图和ODF图(φ2 = 45°)
图9  低温热轧样品(C工艺)冷轧后1000℃退火5 min的EBSD取向成像图和ODF图(φ2 = 45°)
图10  低温热轧样品(D工艺)冷轧后1000℃退火5 min的EBSD取向成像图与ODF图(φ2 = 45°)
图11  不同热轧样品经不同压下量冷轧后在1100℃保温7 min相变退火的样品的磁性能
1 Gu C, Yang P, Mao W M. The influence of rolling process on the microstructure, texture and magnetic properties of low grades non-oriented electrical steel after phase transformation annealing [J]. Acta Metall. Sin., 2019, 55: 181
doi: 10.11900/0412.1961.2018.00187
1 顾 晨, 杨 平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响 [J]. 金属学报, 2019, 55: 181
2 Liu H T, Li H L, Schneider J, et al. Effects of coiling temperature after hot rolling on microstructure, texture, and magnetic properties of non-oriented electrical steel in strip casting processing route [J]. Steel Res. Int., 2016, 87: 1256
doi: 10.1002/srin.v87.10
3 Wu S J, Li H, Yue C X, et al. Effect of finishing temperature on magnetic properties of medium and low grade non-oriented silicon steel [J]. Trans. Mater. Heat Treat., 2019, 40(9): 89
3 吴圣杰, 李 慧, 岳重祥 等. 终轧温度对中低牌号无取向硅钢磁性能的影响 [J]. 材料热处理学报, 2019, 40(9): 89
4 An L Z, Liu H T, Wang G D. Effects of hot-rolled coiled temperature on microstructure, texture and magnetic properties of low silicon non-oriented electrical steels [J]. Electr. Steel, 2021, 3(1): 15
4 安灵子, 刘海涛, 王国栋. 热轧卷取温度对低硅无取向硅钢组织、织构及磁性能的影响 [J]. 电工钢, 2021, 3(1): 15
5 An L Z, Wang Y P, Wang G D, et al. Fabrication of high-performance low silicon non-oriented electrical steels by a new method: Low-finishing-temperature hot rolling combined with batch annealing [J]. J. Magn. Magn. Mater., 2022, 546: 168907
doi: 10.1016/j.jmmm.2021.168907
6 Yashiki H, Okamoto A. Effect of hot-band grain size on magnetic properties of non-oriented electrical steels [J]. IEEE Trans. Magn., 1987, 23: 3086
doi: 10.1109/TMAG.1987.1065261
7 Wu X L, Yang P, Gu X F, et al. Effects of normalizing treatment on microstructure, texture and magnetic properties of 50 W800 electrical steel [J]. Electr. Steel, 2019, 1(1): 29
7 武晓龙, 杨 平, 顾新福 等. 常化处理对50W800电工钢组织、织构与磁性的影响 [J]. 电工钢, 2019, 1(1): 29
8 Xie L, Yang P, Xia D S, et al. Microstructure and texture evolution in a non-oriented electrical steel during γα transformation under various atmosphere conditions [J]. J. Magn. Magn. Mater., 2015, 374: 655
doi: 10.1016/j.jmmm.2014.09.033
9 Xie L, Yang P, Zhang N, et al. Formation of {100} textured columnar grain structure in a non-oriented electrical steel by phase transformation [J]. J. Magn. Magn. Mater., 2014, 356: 1
doi: 10.1016/j.jmmm.2013.12.045
10 Xie L, Yang P, Zhang N, et al. Texture optimization for intermediate Si-containing non-oriented electrical steel [J]. J. Mater. Eng. Perform., 2014, 23: 3849
doi: 10.1007/s11665-014-1201-7
11 Yang P, Xia D S, Wang J H, et al. Influence of processing parameters on microstructures, textures and magnetic properties in a Fe-0.43Si-0.5Mn electrical steel subjected to phase transformation treatment [A]. Proceeding of the 11th Annual Chinese Iron and Steel Congress [C]. Beijing Metallurgical Industry Press, 2017: 1
11 杨 平, 夏冬生, 王金华 等. 相变法制备Fe-0.43Si-0.5Mn电工钢时工艺参数对组织结构和磁性能的影响 [A]. 第十一届中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2017: 1
12 Yang P, Zhang L W, Wang J H, et al. Improvement of texture and magnetic properties by surface effect induced transformation in non-oriented Fe-0.82Si-1.37Mn steel sheets [J]. Steel Res. Int., 2018, 89: 1800045
doi: 10.1002/srin.v89.12
13 Sung J K, Lee D N, Wang D H, et al. Efficient generation of cube-on-face crystallographic texture in iron and its alloys [J]. ISIJ Int., 2011, 51: 284
doi: 10.2355/isijinternational.51.284
14 Sung J K, Koo Y M. Magnetic properties of Fe and Fe-Si alloys with {100} <0vw> texture [J]. J. Appl. Phys., 2013, 113: 17A338
15 Sung J K, Lee D N. Evolution of crystallographic texture in pure iron and commercial steels by γ to α Transformation [J]. Mater. Sci. Forum, 2012, 706-709: 2657
doi: 10.4028/www.scientific.net/MSF.706-709
16 Wu X L, Gu C, Yang P, et al. Transformation delay and texture memory effect of columnar grained cast slab in low grades non-oriented electrical steels [J]. ISIJ Int., 2021, 61: 1669
doi: 10.2355/isijinternational.ISIJINT-2020-623
17 Wu X L, Yang P, Gu X F, et al. Effect of the initial columnar-grained inhomogeneity of electrical steels on the transformation temperature [J]. Steel Res. Int., 2022, 93: 2100388
doi: 10.1002/srin.v93.2
18 Wu X L, Jiang W N, Yang P, et al. Formation of {100} subgrain variants and Σ3 variants during phase transformation of columnar grains in electrical steel: Texture memory and variant selection [J]. Steel Res. Int., 2022, 93: 2100594
doi: 10.1002/srin.v93.5
19 Yang P, Ma D D, Gu X F, et al. On the transformation textures influenced by deformation in electrical steels, high manganese steels and pure titanium sheets [J]. Front. Mater. Sci., 2022, 16: 220582
doi: 10.1007/s11706-022-0582-z
20 Tomida T, Wakita M, Yasuyama M, et al. Memory effects of transformation textures in steel and its prediction by the double Kurdjumov-Sachs relation [J]. Acta Mater., 2013, 61: 2828
doi: 10.1016/j.actamat.2013.01.015
21 Xie L, He M T, Sun L Y, et al. Columnar grain growth in non-oriented electrical steels via plastic deformation of an initial columnar-grained solidification microstructure [J]. Mater. Lett., 2020, 258: 126797
doi: 10.1016/j.matlet.2019.126797
22 Xie L, Liu S J, He M T, et al. Growth and strain behavior of columnar grains in Fe-0.5%Mn alloy by hot-rolling [J]. J. Alloys Compd., 2021, 877: 160257
doi: 10.1016/j.jallcom.2021.160257
23 Cheng L, Yang P, Fang Y P, et al. Preparation of non-oriented silicon steel with high magnetic induction using columnar grains [J]. J. Magn. Magn. Mater., 2012, 324: 4068
doi: 10.1016/j.jmmm.2012.07.019
24 Cheng L, Zhang N, Yang P, et al. Retaining {100} texture from initial columnar grains in electrical steels [J]. Scr. Mater., 2012, 67: 899
doi: 10.1016/j.scriptamat.2012.08.023
25 Zhang N, Yang P, Mao W M. {001}<120>-{113}<361> recrystallization textures induced by initial {001} grains and related microstructure evolution in heavily rolled electrical steel [J]. Mater. Charact., 2016, 119: 225
doi: 10.1016/j.matchar.2016.08.009
26 Zhang N, Yang P, Mao W M. Through process texture evolution of new thin-gauge non-oriented electrical steels with high permeability [J]. J. Magn. Magn. Mater., 2016, 397: 125
doi: 10.1016/j.jmmm.2015.08.066
[1] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[2] 李龙健, 李仁庚, 张家郡, 曹兴豪, 康慧君, 王同敏. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60(3): 405-416.
[3] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[4] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[7] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[8] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[11] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[13] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[15] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.