Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1416-1426    DOI: 10.11900/0412.1961.2022.00355
  综述 本期目录 | 过刊浏览 |
金属材料的构型化复合与强韧化
范根莲, 郭峙岐, 谭占秋, 李志强()
上海交通大学 金属基复合材料国家重点实验室 上海 200240
Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites
FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang()
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
Genlian FAN, Zhiqi GUO, Zhanqiu TAN, Zhiqiang LI. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. Acta Metall Sin, 2022, 58(11): 1416-1426.

全文: PDF(3126 KB)   HTML
摘要: 

金属基复合材料的力学性能不仅取决于增强相与基体的成分配比,还取决于2者的复合构型(形状、尺寸和空间分布)。本文主要围绕复合构型设计,包括增强体非均匀构型设计和基体本征异构设计,归纳金属基复合材料构型设计尺度精细化、尺寸定量化、结构参量多元化的发展历程,探讨了基于能量耗散理论的金属基复合材料构型化复合与强韧化的未来发展方向。

关键词 金属基复合材料强韧化复合构型能量耗散    
Abstract

The mechanical properties of metal matrix composites depend on not only the content of the reinforcements but also the composite architecture (shape, size, and spatial distribution). This paper focuses on the heterogeneous architecture design of metal matrix composites, including the heterogeneous architecture design of reinforcements and the intrinsic heterogeneous design of the matrix. In addition, it summarizes the development process of scale refinement, size quantification, and structural parameter diversification of metal matrix composite architecture design. The future development direction of architectural composite and the strengthening and toughing design of metal matrix composites based on the energy dissipation theory is also proposed.

Key wordsmetal matrix composite    strengthening and toughening    heterogeneous architecture    energy dissipation
收稿日期: 2022-07-27     
ZTFLH:  TG148  
基金资助:国家自然科学基金项目(52192592);国家自然科学基金项目(52192595);国家自然科学基金项目(52171143);国家自然科学基金项目(51871149)
作者简介: 范根莲,女,1980年生,副研究员,博士
图1  典型构型化金属基复合材料示意图:叠层构型、多芯构型、梯度构型、网状构型、微纳混杂构型、微纳砖砌构型、基体梯度异构、基体双/多峰构型
图2  微纳混杂构型中微米颗粒与纳米颗粒的尺寸匹配设计与协同分散[43,46]
图3  基于IAZ理论和弹塑性断裂力学的基体双峰异构晶区匹配优化[60,61]
图4  CNT/2024Al基体三峰异构复合材料[63]
1 Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Mater. China, 2010, 29(4): 1
1 张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
2 Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading [J]. Strategic Study CAE, 2020, 22(2): 79
2 武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战 [J]. 中国工程科学, 2020, 22(2): 79
3 Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrix composites—A review [J]. J. Mater. Sci., 1991, 26: 1137
doi: 10.1007/BF00544448
4 Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
5 Miracle D B. Metal matrix composites—From science to technological significance [J]. Compos. Sci. Technol., 2005, 65: 2526
doi: 10.1016/j.compscitech.2005.05.027
6 Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
7 Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites [J]. Adv. Mater., 2021, 33: 2000688
doi: 10.1002/adma.202000688
8 Kumar P L, Lombardi A, Byczynski G, et al. Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: A critical review [J]. Prog. Mater. Sci., 2022, 128: 100948
doi: 10.1016/j.pmatsci.2022.100948
9 Wu G H, Qiao J, Jiang L T. Research progress on principle of dimensional stability and stabilization design of Al and its composites [J]. Acta Metall. Sin., 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
9 武高辉, 乔 菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展 [J]. 金属学报, 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
10 Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites—A review [J]. Int. Mater. Rev., 2010, 55: 41
doi: 10.1179/095066009X12572530170543
11 Withers P J, Preuss M. Fatigue and damage in structural materials studied by X-ray tomography [J]. Annu. Rev. Mater. Res., 2012, 42: 81
doi: 10.1146/annurev-matsci-070511-155111
12 Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
13 Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites [J]. Carbon, 2011, 49: 533
doi: 10.1016/j.carbon.2010.09.054
14 Barai P, Weng G J. A theory of plasticity for carbon nanotube reinforced composites [J]. Int. J. Plast., 2011, 27: 539
doi: 10.1016/j.ijplas.2010.08.006
15 Kwon H, Park D H, Silvain J F, et al. Investigation of carbon nanotube reinforced aluminum matrix composite materials [J]. Compos. Sci. Technol., 2010, 70: 546
doi: 10.1016/j.compscitech.2009.11.025
16 Chen B, Jia L, Li S F, et al. In situ synthesized Al4C3 nanorods with excellent strengthening effect in aluminum matrix composites [J]. Adv. Eng. Mater., 2014, 16: 972
doi: 10.1002/adem.201400232
17 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
18 Meyers M A, McKittrick J, Chen P Y. Structural biological materials: Critical mechanics-materials connections [J]. Science, 2013, 339: 773
doi: 10.1126/science.1220854 pmid: 23413348
19 Barthelat F, Yin Z, Buehler M J. Structure and mechanics of interfaces in biological materials [J]. Nat. Rev. Mater., 2016, 1: 16007
doi: 10.1038/natrevmats.2016.7
20 Libonati F, Buehler M J. Advanced structural materials by bioinspiration [J]. Adv. Eng. Mater., 2017, 19: 1600787
doi: 10.1002/adem.201600787
21 Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nat. Commun., 2017, 8: 287
doi: 10.1038/s41467-017-00392-z
22 Grishaber R B, Sergueeva A V, Mishra R S, et al. Laminated metal composites—High temperature deformation behavior [J]. Mater. Sci. Eng., 2005, A403: 17
23 Liu B X, Huang L J, Geng L, et al. Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding [J]. J. Alloys Compd., 2014, 602: 187
doi: 10.1016/j.jallcom.2014.02.140
24 Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
25 Liu B X, Huang L J, Kaveendran B, et al. Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status [J]. Composites, 2017, 108B: 377
26 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
27 Qin S Y, Zhang G D. Preparation of high fracture performance SiCp-6061A1/6061A1 composite [J]. Mater. Sci. Eng., 2000, A279: 231
28 Liu C, Qin S Y, Zhang G D, et al. Micromechanical properties of high fracture performance SiCp-6061Al/6061Al composite [J]. Mater. Sci. Eng., 2002, A332: 203
29 Chen L, Hou Z C, Liu Y F, et al. High strength and high ductility copper matrix composite reinforced by graded distribution of carbon nanotubes [J]. Composites, 2020, 138A: 106063
30 Guo C, Guo S W, Cheng Y, et al. Bending mechanical properties and its evaluation of aluminium alloy matrix gradient composites reinforced with SiC particles [J]. Acta Mater. Compos. Sin., 2002, 19(6): 57
30 郭 成, 郭生武, 程 羽 等. SiC颗粒增强铝合金基梯度复合材料弯曲力学性能及其评价 [J]. 复合材料学报, 2002, 19(6): 57
31 Wang W R, Xie H F, Xie L, et al. Fabrication of ceramics/high-entropy alloys gradient composites by combustion synthesis in ultra-high gravity field [J]. Mater. Lett., 2018, 233: 4
doi: 10.1016/j.matlet.2018.08.059
32 Moon R J, Tilbrook M, Hoffman M, et al. Al-Al2O3 composites with interpenetrating network structures: Composite modulus estimation [J]. J. Am. Ceram. Soc., 2005, 88: 666
doi: 10.1111/j.1551-2916.2005.00115.x
33 Dong Z Q, Zhang L, Chen W X. Evaluation of Cu-Cr3C2 composite with interpenetrating network [J]. Mater. Sci. Eng., 2012, A552: 24
34 Kaveendran B, Wang G S, Huang L J, et al. In situ (Al3Zr + Al2O3np)/2024Al metal matrix composite with novel reinforcement distributions fabricated by reaction hot pressing [J]. J. Alloys Compd., 2013, 581: 16
doi: 10.1016/j.jallcom.2013.06.143
35 Jiao Y, Huang L J, Duan T B, et al. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3 + TiBw)/Ti6Al4V composites [J]. Sci. Rep., 2016, 6: 32991
doi: 10.1038/srep32991 pmid: 27622992
36 De Castro V, Leguey T, Muñoz A, et al. Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting [J]. Mater. Sci. Eng., 2006, A422: 189
37 Yang Z F, Lu W J, Qin J N, et al. Microstructural characterization of Nd2O3 in in situ synthesized multiple-reinforced (TiB + TiC + Nd2O3)/Ti composites [J]. J. Alloys Compd., 2006, 425: 379
doi: 10.1016/j.jallcom.2006.01.045
38 Xiao L, Lu W J, Qin J N, et al. Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite [J]. Compos. Sci. Technol., 2009, 69: 1925
doi: 10.1016/j.compscitech.2009.04.009
39 Zhang X, Shi C S, Liu E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network [J]. Nanoscale, 2017, 9: 11929
doi: 10.1039/c6nr07335b pmid: 28786440
40 Shen M J, Wang X J, Li C D, et al. Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Des., 2013, 52: 1011
doi: 10.1016/j.matdes.2013.05.067
41 Chand S, Chandrasekhar P, Sarangi R K, et al. Influence of B4C particles on processing and strengthening mechanisms in aluminum metal matrix composites—A review [J]. Mater. Today: Proc., 2019, 18: 5356
42 Khorshid M T, Jahromi S A J, Moshksar M M. Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion [J]. Mater. Des., 2010, 31: 3880
doi: 10.1016/j.matdes.2010.02.047
43 Kai X Z, Li Z Q, Fan G L, et al. Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy [J]. Scr. Mater., 2013, 68: 555
doi: 10.1016/j.scriptamat.2012.11.024
44 Xie K W, Nie J F, Ma X, et al. Increasing the ductility of heat-resistant AlNp/Al composites by submicron Al2O3 particles [J]. Mater. Charact., 2020, 170: 110672
doi: 10.1016/j.matchar.2020.110672
45 Carvalho O, Buciumeanu M, Madeira S, et al. Mechanisms governing the mechanical behavior of an AlSi-CNTs-SiCp hybrid composite [J]. Composites, 2016, 90B: 443
46 Li S S, Su Y S, Zhu X H, et al. Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites [J]. Mater. Des., 2016, 107: 130
doi: 10.1016/j.matdes.2016.06.021
47 Qiu C H, Su Y S, Yang J Y, et al. Microstructural characteristics and mechanical behavior of SiC(CNT)/Al multiphase interfacial micro-zones via molecular dynamics simulations [J]. Composites, 2021, 220B: 108996
48 Fan G L, Xu R, Tan Z Q, et al. Development of flake powder metallurgy in fabricating metal matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 806
doi: 10.1007/s40195-014-0148-x
49 Xu R, Tan Z Q, Fan G L, et al. Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites [J]. Int. J. Plast., 2019, 120: 278
doi: 10.1016/j.ijplas.2019.05.006
50 Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility [J]. Scr. Mater., 2011, 65: 412
doi: 10.1016/j.scriptamat.2011.05.022
51 Jiang Y Y, Xu R, Tan Z Q, et al. Interface-induced strain hardening of graphene nanosheet/aluminum composites [J]. Carbon, 2019, 146: 17
doi: 10.1016/j.carbon.2019.01.094
52 Zhang Z M, Fan G L, Tan Z Q, et al. Towards the strength-ductility synergy of Al2O3/Al composite through the design of roughened interface [J]. Composites, 2021, 224B: 109251
53 Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J]. Carbon, 2017, 117: 65
doi: 10.1016/j.carbon.2017.02.089
54 Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure [J]. Nano Lett., 2015, 15: 8077
doi: 10.1021/acs.nanolett.5b03492 pmid: 26574873
55 Zhang Z M, Fan G L, Tan Z Q, et al. Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties [J]. Composites, 2021, 217B: 108916
56 Yang L, Gao Q, Liu H, et al. Fabrication and properties of dual-gradient nanostructured copper matrix composites reinforced by silicon carbide particles [J]. Powder Metall. Technol., 2016, 34: 428
56 杨 雷, 高 求, 刘 鸿 等. 碳化硅颗粒强化铜基双梯度纳米结构复合材料的制备及性能 [J]. 粉末冶金技术, 2016, 34: 428
57 Ye J C, Han B Q, Lee Z, et al. A tri-modal aluminum based composite with super-high strength [J]. Scr. Mater., 2005, 53: 481
doi: 10.1016/j.scriptamat.2005.05.004
58 Zhang Z H, Topping T, Li Y, et al. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles [J]. Scr. Mater., 2011, 65: 652
doi: 10.1016/j.scriptamat.2011.06.037
59 Zan Y N, Zhou Y T, Liu Z Y, et al. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites [J]. Mater. Des., 2019, 166: 107629
doi: 10.1016/j.matdes.2019.107629
60 Fu X W, Yu Z Y, Tan Z Q, et al. Enhanced strain hardening by bimodal grain structure in carbon nanotube reinforced Al-Mg composites [J]. Mater. Sci. Eng., 2021, A803: 140726
61 Ma K, Liu Z Y, Liu K, et al. Structure optimization for improving the strength and ductility of heterogeneous carbon nanotube/Al-Cu-Mg composites [J]. Carbon, 2021, 178: 190
doi: 10.1016/j.carbon.2021.03.006
62 Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation [J]. Carbon, 2020, 157: 602
doi: 10.1016/j.carbon.2019.10.080
63 Fu X W, Tan Z Q, Min X R, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying [J]. Mater. Res. Lett., 2021, 9: 50
doi: 10.1080/21663831.2020.1818324
64 Fu X W, Tan Z Q, Ma Z Q, et al. Powder assembly & alloying to CNT/Al-Cu-Mg composites with trimodal grain structure and strength-ductility synergy [J]. Composites, 2021, 225B: 109271
65 Luo X, Zhao K, He X, et al. Evading strength and ductility trade-off in an inverse nacre structured magnesium matrix nanocomposite [J]. Acta Mater., 2022, 228: 117730
doi: 10.1016/j.actamat.2022.117730
66 Gao H J, Ji B H, Jäger I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 5597
doi: 10.1073/pnas.0631609100
67 Wang H Y, Li C, Li Z G, et al. Current research and future prospect on the preparation and architecture design of nanomaterials reinforced light metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
67 王慧远, 李 超, 李志刚 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望 [J]. 金属学报, 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
68 Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
68 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
69 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
70 So K P, Kushima A, Park J G, et al. Intragranular dispersion of carbon nanotubes comprehensively improves aluminum alloys [J]. Adv. Sci., 2018, 5: 1800115
doi: 10.1002/advs.201800115
71 Liu Q B, Fan G L, Tan Z Q, et al. Reinforcement with intragranular dispersion of carbon nanotubes in aluminum matrix composites [J]. Composites, 2021, 217B: 108915
72 Liu Q B, Fan G L, Tan Z Q, et al. Effect of thermomechanical treatment and length-scales on spatial distribution of CNTs in Al matrix [J]. Carbon, 2022, 190: 384
doi: 10.1016/j.carbon.2022.01.024
73 Zhang D L. Ultrafine grained metals and metal matrix nanocomposites fabricated by powder processing and thermomechanical powder consolidation [J]. Prog. Mater. Sci., 2021, 119: 100796
doi: 10.1016/j.pmatsci.2021.100796
74 Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
74 肖伯律, 黄治冶, 马 凯 等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
75 Schwarze C, Kamachali R D, Steinbach I. Phase-field study of zener drag and pinning of cylindrical particles in polycrystalline materials [J]. Acta Mater., 2016, 106: 59
doi: 10.1016/j.actamat.2015.10.045
76 Li Y, Lin Y J, Xiong Y H, et al. Extended twinning phenomena in Al-4%Mg alloys/B4C nanocomposite [J]. Scr. Mater., 2011, 64: 133
doi: 10.1016/j.scriptamat.2010.09.027
77 Wang H, Geng H W, Zhou D S, et al. Multiple strengthening mechanisms in high strength ultrafine-grained Al-Mg alloys [J]. Mater. Sci. Eng., 2020, A771: 138613
78 Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602 pmid: 23471404
79 Ni D R, Ma Z Y. Shape memory alloy-reinforced metal-matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 739
doi: 10.1007/s40195-014-0164-x
80 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
81 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
82 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
83 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
84 Shuai L F, Huang T L, Yu T B, et al. Segregation and precipitation stabilizing an ultrafine lamellar-structured Al-0.3%Cu alloy [J]. Acta Mater., 2021, 206: 116595
doi: 10.1016/j.actamat.2020.116595
85 Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
86 Shen M J, Wang X J, Zhang M F, et al. Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites [J]. Compos. Sci. Technol., 2015, 118: 85
doi: 10.1016/j.compscitech.2015.08.009
87 Sun H, Saba F, Fan G L, et al. Micro/nano-reinforcements in bimodal-grained matrix: A heterostructure strategy for toughening particulate reinforced metal matrix composites [J]. Scr. Mater., 2022, 217: 114774
doi: 10.1016/j.scriptamat.2022.114774
88 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
89 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
90 Wang D, Xiao B L, Ni D R, et al. Friction stir welding of discontinuously reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 816
doi: 10.1007/s40195-014-0143-2
91 Avettand-Fènoël M N, Simar A. A review about friction stir welding of metal matrix composites [J]. Mater. Charact., 2016, 120: 1
doi: 10.1016/j.matchar.2016.07.010
92 Dadkhah M, Mosallanejad M H, Iuliano L, et al. A comprehensive overview on the latest progress in the additive manufacturing of metal matrix composites: Potential, challenges, and feasible solutions [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1173
doi: 10.1007/s40195-021-01249-7
93 Tang S Y, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites—A review [J]. Adv. Eng. Mater., 2021, 23: 2100053
doi: 10.1002/adem.202100053
94 Zhang S, Van Dijk N, Van Der Zwaag S. A review of self-healing metals: Fundamentals, design principles and performance [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1167
doi: 10.1007/s40195-020-01102-3
95 Chen K X, Li L. Ordered structures with functional units as a paradigm of material design [J]. Adv. Mater., 2019, 31: 1901115
96 Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
96 张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
97 Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
98 Qiu C H, Su Y S, Yang J Y, et al. Structural modelling and mechanical behaviors of graphene/carbon nanotubes reinforced metal matrix composites via atomic-scale simulations: A review [J]. Composites, 2021, 4C: 100120
[1] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[2] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[4] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[5] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[6] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[7] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[8] 朱士泽, 王东, 王全兆, 肖伯律, 马宗义. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 2021, 57(7): 928-936.
[9] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[10] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[11] 刘东雷, 陈情, 王德, 张睿, 王文琴. Ti-6Al-4V表面电子束熔覆(Ti, W)C1-x复合涂层的形成及摩擦性能[J]. 金属学报, 2020, 56(7): 1025-1035.
[12] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[13] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[14] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[15] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.