|
|
金属材料的构型化复合与强韧化 |
范根莲, 郭峙岐, 谭占秋, 李志强( ) |
上海交通大学 金属基复合材料国家重点实验室 上海 200240 |
|
Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites |
FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang( ) |
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
Genlian FAN,
Zhiqi GUO,
Zhanqiu TAN,
Zhiqiang LI.
Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. Acta Metall Sin, 2022, 58(11): 1416-1426.
1 |
Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Mater. China, 2010, 29(4): 1
|
1 |
张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
|
2 |
Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading [J]. Strategic Study CAE, 2020, 22(2): 79
|
2 |
武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战 [J]. 中国工程科学, 2020, 22(2): 79
|
3 |
Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrix composites—A review [J]. J. Mater. Sci., 1991, 26: 1137
doi: 10.1007/BF00544448
|
4 |
Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
|
5 |
Miracle D B. Metal matrix composites—From science to technological significance [J]. Compos. Sci. Technol., 2005, 65: 2526
doi: 10.1016/j.compscitech.2005.05.027
|
6 |
Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets [J]. Mater. Sci. Eng., 2013, R74: 281
|
7 |
Huang L J, An Q, Geng L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites [J]. Adv. Mater., 2021, 33: 2000688
doi: 10.1002/adma.202000688
|
8 |
Kumar P L, Lombardi A, Byczynski G, et al. Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: A critical review [J]. Prog. Mater. Sci., 2022, 128: 100948
doi: 10.1016/j.pmatsci.2022.100948
|
9 |
Wu G H, Qiao J, Jiang L T. Research progress on principle of dimensional stability and stabilization design of Al and its composites [J]. Acta Metall. Sin., 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
|
9 |
武高辉, 乔 菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展 [J]. 金属学报, 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
|
10 |
Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites—A review [J]. Int. Mater. Rev., 2010, 55: 41
doi: 10.1179/095066009X12572530170543
|
11 |
Withers P J, Preuss M. Fatigue and damage in structural materials studied by X-ray tomography [J]. Annu. Rev. Mater. Res., 2012, 42: 81
doi: 10.1146/annurev-matsci-070511-155111
|
12 |
Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
|
13 |
Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites [J]. Carbon, 2011, 49: 533
doi: 10.1016/j.carbon.2010.09.054
|
14 |
Barai P, Weng G J. A theory of plasticity for carbon nanotube reinforced composites [J]. Int. J. Plast., 2011, 27: 539
doi: 10.1016/j.ijplas.2010.08.006
|
15 |
Kwon H, Park D H, Silvain J F, et al. Investigation of carbon nanotube reinforced aluminum matrix composite materials [J]. Compos. Sci. Technol., 2010, 70: 546
doi: 10.1016/j.compscitech.2009.11.025
|
16 |
Chen B, Jia L, Li S F, et al. In situ synthesized Al4C3 nanorods with excellent strengthening effect in aluminum matrix composites [J]. Adv. Eng. Mater., 2014, 16: 972
doi: 10.1002/adem.201400232
|
17 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
18 |
Meyers M A, McKittrick J, Chen P Y. Structural biological materials: Critical mechanics-materials connections [J]. Science, 2013, 339: 773
doi: 10.1126/science.1220854
pmid: 23413348
|
19 |
Barthelat F, Yin Z, Buehler M J. Structure and mechanics of interfaces in biological materials [J]. Nat. Rev. Mater., 2016, 1: 16007
doi: 10.1038/natrevmats.2016.7
|
20 |
Libonati F, Buehler M J. Advanced structural materials by bioinspiration [J]. Adv. Eng. Mater., 2017, 19: 1600787
doi: 10.1002/adem.201600787
|
21 |
Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nat. Commun., 2017, 8: 287
doi: 10.1038/s41467-017-00392-z
|
22 |
Grishaber R B, Sergueeva A V, Mishra R S, et al. Laminated metal composites—High temperature deformation behavior [J]. Mater. Sci. Eng., 2005, A403: 17
|
23 |
Liu B X, Huang L J, Geng L, et al. Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding [J]. J. Alloys Compd., 2014, 602: 187
doi: 10.1016/j.jallcom.2014.02.140
|
24 |
Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes [J]. Compos. Sci. Technol., 2016, 126: 94
doi: 10.1016/j.compscitech.2016.02.011
|
25 |
Liu B X, Huang L J, Kaveendran B, et al. Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status [J]. Composites, 2017, 108B: 377
|
26 |
Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
|
27 |
Qin S Y, Zhang G D. Preparation of high fracture performance SiCp-6061A1/6061A1 composite [J]. Mater. Sci. Eng., 2000, A279: 231
|
28 |
Liu C, Qin S Y, Zhang G D, et al. Micromechanical properties of high fracture performance SiCp-6061Al/6061Al composite [J]. Mater. Sci. Eng., 2002, A332: 203
|
29 |
Chen L, Hou Z C, Liu Y F, et al. High strength and high ductility copper matrix composite reinforced by graded distribution of carbon nanotubes [J]. Composites, 2020, 138A: 106063
|
30 |
Guo C, Guo S W, Cheng Y, et al. Bending mechanical properties and its evaluation of aluminium alloy matrix gradient composites reinforced with SiC particles [J]. Acta Mater. Compos. Sin., 2002, 19(6): 57
|
30 |
郭 成, 郭生武, 程 羽 等. SiC颗粒增强铝合金基梯度复合材料弯曲力学性能及其评价 [J]. 复合材料学报, 2002, 19(6): 57
|
31 |
Wang W R, Xie H F, Xie L, et al. Fabrication of ceramics/high-entropy alloys gradient composites by combustion synthesis in ultra-high gravity field [J]. Mater. Lett., 2018, 233: 4
doi: 10.1016/j.matlet.2018.08.059
|
32 |
Moon R J, Tilbrook M, Hoffman M, et al. Al-Al2O3 composites with interpenetrating network structures: Composite modulus estimation [J]. J. Am. Ceram. Soc., 2005, 88: 666
doi: 10.1111/j.1551-2916.2005.00115.x
|
33 |
Dong Z Q, Zhang L, Chen W X. Evaluation of Cu-Cr3C2 composite with interpenetrating network [J]. Mater. Sci. Eng., 2012, A552: 24
|
34 |
Kaveendran B, Wang G S, Huang L J, et al. In situ (Al3Zr + Al2O3np)/2024Al metal matrix composite with novel reinforcement distributions fabricated by reaction hot pressing [J]. J. Alloys Compd., 2013, 581: 16
doi: 10.1016/j.jallcom.2013.06.143
|
35 |
Jiao Y, Huang L J, Duan T B, et al. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3 + TiBw)/Ti6Al4V composites [J]. Sci. Rep., 2016, 6: 32991
doi: 10.1038/srep32991
pmid: 27622992
|
36 |
De Castro V, Leguey T, Muñoz A, et al. Microstructure and tensile properties of Y2O3-dispersed titanium produced by arc melting [J]. Mater. Sci. Eng., 2006, A422: 189
|
37 |
Yang Z F, Lu W J, Qin J N, et al. Microstructural characterization of Nd2O3 in in situ synthesized multiple-reinforced (TiB + TiC + Nd2O3)/Ti composites [J]. J. Alloys Compd., 2006, 425: 379
doi: 10.1016/j.jallcom.2006.01.045
|
38 |
Xiao L, Lu W J, Qin J N, et al. Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite [J]. Compos. Sci. Technol., 2009, 69: 1925
doi: 10.1016/j.compscitech.2009.04.009
|
39 |
Zhang X, Shi C S, Liu E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network [J]. Nanoscale, 2017, 9: 11929
doi: 10.1039/c6nr07335b
pmid: 28786440
|
40 |
Shen M J, Wang X J, Li C D, et al. Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites [J]. Mater. Des., 2013, 52: 1011
doi: 10.1016/j.matdes.2013.05.067
|
41 |
Chand S, Chandrasekhar P, Sarangi R K, et al. Influence of B4C particles on processing and strengthening mechanisms in aluminum metal matrix composites—A review [J]. Mater. Today: Proc., 2019, 18: 5356
|
42 |
Khorshid M T, Jahromi S A J, Moshksar M M. Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion [J]. Mater. Des., 2010, 31: 3880
doi: 10.1016/j.matdes.2010.02.047
|
43 |
Kai X Z, Li Z Q, Fan G L, et al. Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy [J]. Scr. Mater., 2013, 68: 555
doi: 10.1016/j.scriptamat.2012.11.024
|
44 |
Xie K W, Nie J F, Ma X, et al. Increasing the ductility of heat-resistant AlNp/Al composites by submicron Al2O3 particles [J]. Mater. Charact., 2020, 170: 110672
doi: 10.1016/j.matchar.2020.110672
|
45 |
Carvalho O, Buciumeanu M, Madeira S, et al. Mechanisms governing the mechanical behavior of an AlSi-CNTs-SiCp hybrid composite [J]. Composites, 2016, 90B: 443
|
46 |
Li S S, Su Y S, Zhu X H, et al. Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites [J]. Mater. Des., 2016, 107: 130
doi: 10.1016/j.matdes.2016.06.021
|
47 |
Qiu C H, Su Y S, Yang J Y, et al. Microstructural characteristics and mechanical behavior of SiC(CNT)/Al multiphase interfacial micro-zones via molecular dynamics simulations [J]. Composites, 2021, 220B: 108996
|
48 |
Fan G L, Xu R, Tan Z Q, et al. Development of flake powder metallurgy in fabricating metal matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 806
doi: 10.1007/s40195-014-0148-x
|
49 |
Xu R, Tan Z Q, Fan G L, et al. Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites [J]. Int. J. Plast., 2019, 120: 278
doi: 10.1016/j.ijplas.2019.05.006
|
50 |
Jiang L, Li Z Q, Fan G L, et al. A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility [J]. Scr. Mater., 2011, 65: 412
doi: 10.1016/j.scriptamat.2011.05.022
|
51 |
Jiang Y Y, Xu R, Tan Z Q, et al. Interface-induced strain hardening of graphene nanosheet/aluminum composites [J]. Carbon, 2019, 146: 17
doi: 10.1016/j.carbon.2019.01.094
|
52 |
Zhang Z M, Fan G L, Tan Z Q, et al. Towards the strength-ductility synergy of Al2O3/Al composite through the design of roughened interface [J]. Composites, 2021, 224B: 109251
|
53 |
Cao M, Xiong D B, Tan Z Q, et al. Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J]. Carbon, 2017, 117: 65
doi: 10.1016/j.carbon.2017.02.089
|
54 |
Li Z, Guo Q, Li Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure [J]. Nano Lett., 2015, 15: 8077
doi: 10.1021/acs.nanolett.5b03492
pmid: 26574873
|
55 |
Zhang Z M, Fan G L, Tan Z Q, et al. Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties [J]. Composites, 2021, 217B: 108916
|
56 |
Yang L, Gao Q, Liu H, et al. Fabrication and properties of dual-gradient nanostructured copper matrix composites reinforced by silicon carbide particles [J]. Powder Metall. Technol., 2016, 34: 428
|
56 |
杨 雷, 高 求, 刘 鸿 等. 碳化硅颗粒强化铜基双梯度纳米结构复合材料的制备及性能 [J]. 粉末冶金技术, 2016, 34: 428
|
57 |
Ye J C, Han B Q, Lee Z, et al. A tri-modal aluminum based composite with super-high strength [J]. Scr. Mater., 2005, 53: 481
doi: 10.1016/j.scriptamat.2005.05.004
|
58 |
Zhang Z H, Topping T, Li Y, et al. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles [J]. Scr. Mater., 2011, 65: 652
doi: 10.1016/j.scriptamat.2011.06.037
|
59 |
Zan Y N, Zhou Y T, Liu Z Y, et al. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites [J]. Mater. Des., 2019, 166: 107629
doi: 10.1016/j.matdes.2019.107629
|
60 |
Fu X W, Yu Z Y, Tan Z Q, et al. Enhanced strain hardening by bimodal grain structure in carbon nanotube reinforced Al-Mg composites [J]. Mater. Sci. Eng., 2021, A803: 140726
|
61 |
Ma K, Liu Z Y, Liu K, et al. Structure optimization for improving the strength and ductility of heterogeneous carbon nanotube/Al-Cu-Mg composites [J]. Carbon, 2021, 178: 190
doi: 10.1016/j.carbon.2021.03.006
|
62 |
Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation [J]. Carbon, 2020, 157: 602
doi: 10.1016/j.carbon.2019.10.080
|
63 |
Fu X W, Tan Z Q, Min X R, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying [J]. Mater. Res. Lett., 2021, 9: 50
doi: 10.1080/21663831.2020.1818324
|
64 |
Fu X W, Tan Z Q, Ma Z Q, et al. Powder assembly & alloying to CNT/Al-Cu-Mg composites with trimodal grain structure and strength-ductility synergy [J]. Composites, 2021, 225B: 109271
|
65 |
Luo X, Zhao K, He X, et al. Evading strength and ductility trade-off in an inverse nacre structured magnesium matrix nanocomposite [J]. Acta Mater., 2022, 228: 117730
doi: 10.1016/j.actamat.2022.117730
|
66 |
Gao H J, Ji B H, Jäger I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 5597
doi: 10.1073/pnas.0631609100
|
67 |
Wang H Y, Li C, Li Z G, et al. Current research and future prospect on the preparation and architecture design of nanomaterials reinforced light metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
|
67 |
王慧远, 李 超, 李志刚 等. 纳米增强体强化轻合金复合材料制备及构型设计研究进展与展望 [J]. 金属学报, 2019, 55: 683
doi: 10.11900/0412.1961.2018.00517
|
68 |
Zhao N Q, Liu X H, Pu B W. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin., 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
|
68 |
赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展 [J]. 金属学报, 2019, 55: 1
doi: 10.11900/0412.1961.2018.00456
|
69 |
Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544
pmid: 23353630
|
70 |
So K P, Kushima A, Park J G, et al. Intragranular dispersion of carbon nanotubes comprehensively improves aluminum alloys [J]. Adv. Sci., 2018, 5: 1800115
doi: 10.1002/advs.201800115
|
71 |
Liu Q B, Fan G L, Tan Z Q, et al. Reinforcement with intragranular dispersion of carbon nanotubes in aluminum matrix composites [J]. Composites, 2021, 217B: 108915
|
72 |
Liu Q B, Fan G L, Tan Z Q, et al. Effect of thermomechanical treatment and length-scales on spatial distribution of CNTs in Al matrix [J]. Carbon, 2022, 190: 384
doi: 10.1016/j.carbon.2022.01.024
|
73 |
Zhang D L. Ultrafine grained metals and metal matrix nanocomposites fabricated by powder processing and thermomechanical powder consolidation [J]. Prog. Mater. Sci., 2021, 119: 100796
doi: 10.1016/j.pmatsci.2021.100796
|
74 |
Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
|
74 |
肖伯律, 黄治冶, 马 凯 等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59
doi: 10.11900/0412.1961.2018.00461
|
75 |
Schwarze C, Kamachali R D, Steinbach I. Phase-field study of zener drag and pinning of cylindrical particles in polycrystalline materials [J]. Acta Mater., 2016, 106: 59
doi: 10.1016/j.actamat.2015.10.045
|
76 |
Li Y, Lin Y J, Xiong Y H, et al. Extended twinning phenomena in Al-4%Mg alloys/B4C nanocomposite [J]. Scr. Mater., 2011, 64: 133
doi: 10.1016/j.scriptamat.2010.09.027
|
77 |
Wang H, Geng H W, Zhou D S, et al. Multiple strengthening mechanisms in high strength ultrafine-grained Al-Mg alloys [J]. Mater. Sci. Eng., 2020, A771: 138613
|
78 |
Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602
pmid: 23471404
|
79 |
Ni D R, Ma Z Y. Shape memory alloy-reinforced metal-matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 739
doi: 10.1007/s40195-014-0164-x
|
80 |
Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
|
81 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
82 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
83 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
84 |
Shuai L F, Huang T L, Yu T B, et al. Segregation and precipitation stabilizing an ultrafine lamellar-structured Al-0.3%Cu alloy [J]. Acta Mater., 2021, 206: 116595
doi: 10.1016/j.actamat.2020.116595
|
85 |
Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
|
86 |
Shen M J, Wang X J, Zhang M F, et al. Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites [J]. Compos. Sci. Technol., 2015, 118: 85
doi: 10.1016/j.compscitech.2015.08.009
|
87 |
Sun H, Saba F, Fan G L, et al. Micro/nano-reinforcements in bimodal-grained matrix: A heterostructure strategy for toughening particulate reinforced metal matrix composites [J]. Scr. Mater., 2022, 217: 114774
doi: 10.1016/j.scriptamat.2022.114774
|
88 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
89 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
90 |
Wang D, Xiao B L, Ni D R, et al. Friction stir welding of discontinuously reinforced aluminum matrix composites: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 816
doi: 10.1007/s40195-014-0143-2
|
91 |
Avettand-Fènoël M N, Simar A. A review about friction stir welding of metal matrix composites [J]. Mater. Charact., 2016, 120: 1
doi: 10.1016/j.matchar.2016.07.010
|
92 |
Dadkhah M, Mosallanejad M H, Iuliano L, et al. A comprehensive overview on the latest progress in the additive manufacturing of metal matrix composites: Potential, challenges, and feasible solutions [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1173
doi: 10.1007/s40195-021-01249-7
|
93 |
Tang S Y, Ummethala R, Suryanarayana C, et al. Additive manufacturing of aluminum-based metal matrix composites—A review [J]. Adv. Eng. Mater., 2021, 23: 2100053
doi: 10.1002/adem.202100053
|
94 |
Zhang S, Van Dijk N, Van Der Zwaag S. A review of self-healing metals: Fundamentals, design principles and performance [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1167
doi: 10.1007/s40195-020-01102-3
|
95 |
Chen K X, Li L. Ordered structures with functional units as a paradigm of material design [J]. Adv. Mater., 2019, 31: 1901115
|
96 |
Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
96 |
张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
|
97 |
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
|
98 |
Qiu C H, Su Y S, Yang J Y, et al. Structural modelling and mechanical behaviors of graphene/carbon nanotubes reinforced metal matrix composites via atomic-scale simulations: A review [J]. Composites, 2021, 4C: 100120
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|