Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1319-1328    DOI: 10.11900/0412.1961.2018.00523
  本期目录 | 过刊浏览 |
热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响
马国楠1,2,王东1(),刘振宇1,毕胜1,2,昝宇宁1,2,肖伯律1,马宗义1
1. 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites
MA Guonan1,2,WANG Dong1(),LIU Zhenyu1,BI Sheng1,2,ZAN Yuning1,2,XIAO Bolv1,MA Zongyi1
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
全文: PDF(20713 KB)   HTML
摘要: 

利用粉末冶金法制备了含15%SiC (体积分数)的SiC/Al-7.5Zn-2.8Mg-1.7Cu (质量分数,%)复合材料,采用TEM、EPMA和拉伸实验等分析测试手段,研究了热压烧结温度(500~560 ℃)对复合材料微观组织和力学性能的影响。结果表明,所选热压温度下均可制备致密无孔洞的复合材料坯锭。热压温度为500和520 ℃时,SiC/Al界面反应程度较轻,挤压棒材经T6热处理后,Zn元素均匀分布于基体中,但存在的少量富Mg微米级难溶相使复合材料的力学性能产生较大波动。当热压温度升高到540 ℃时,富Mg难溶相尺寸明显减小,元素分布变得更均匀,复合材料力学性能稳定性明显提升。当热压温度继续升高到560 ℃时,Mg元素开始向SiC颗粒周围偏聚,界面反应更加严重,而且降低了基体中MgZn2的体积分数,使复合材料抗拉强度明显下降。对560 ℃热压的复合材料进行高角度环形暗场像和EDS分析,发现SiC/Al界面同时存在含Mg氧化物和粗大的MgZn2沉淀相。

关键词 粉末冶金金属基复合材料界面析出相    
Abstract

Particulate reinforced aluminum matrix composites have been widely used in industrial fields. In general, high strength aluminium alloys, such as 2024Al are employed to produce stronger composites. However, the composites with high strength Al-Zn-Mg-Cu alloys as the matrices are paid relative attentions. Therefore, the corresponding optimization for fabrication parameters has not been well understood. In the present work, SiC particles with volume fraction of 15% reinforced Al-7.5Zn-2.8Mg-1.7Cu (mass fraction, %) composites were fabricated using powder metallurgy (PM) technique at hot pressing temperatures of 500, 520, 540 and 560 ℃. TEM, EPMA and tensile test were used to study the effect of hot pressing temperature on the microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites. The measured densities indicated that all the composites were completely condensed, no pores were observed. Undissolved phase containing Mg and Cu segregated in matrix of the composites hot pressed at 500 and 520 ℃, resulting in instable tensile properties. With increasing hot pressing temperature to 540 ℃, Mg and Cu were uniformly distributed in the composites which exhibited the stable tensile properties. With further increasing temperature to 560 ℃, Mg segregated around SiC particles due to interface reaction. In this case, the content of MgZn2 phase was decreased, resulting in the reduction of tensile strength. HAADF-STEM and EDS analyses showed that the interface compounds were oxide of Mg and coarse MgZn2 phase.

Key wordspowder metallurgy    metal matrix composite    interface    precipitate
收稿日期: 2018-11-20     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(52017YFB0703104);国家自然科学基金项目(51771193);国家自然科学基金项目(U1508216)
通讯作者: 王东     E-mail: dongwang@imr.ac.cn
Corresponding author: Dong WANG     E-mail: dongwang@imr.ac.cn
作者简介: 马国楠,男,1992年生,博士生

引用本文:

马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
Guonan MA, Dong WANG, Zhenyu LIU, Sheng BI, Yuning ZAN, Bolv XIAO, Zongyi MA. Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites. Acta Metall Sin, 2019, 55(10): 1319-1328.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00523      或      https://www.ams.org.cn/CN/Y2019/V55/I10/1319

Hot pressing temperature / ℃Measured density / (g·cm-3)Relative density / %
5002.87799.93
5202.87899.96
5402.879100.00
5602.881100.01
表1  不同热压温度制备热压态SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料的测量密度和致密度
图1  不同热压温度制备的SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料挤压棒材显微组织的OM像
图2  SiC颗粒分布的均匀性
图3  不同热压温度制备的SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料的XRD谱
图4  500 ℃热压烧结T6态SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料的SE-SEM像和元素分布图
图5  不同热压温度制备T6态SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料的SE-SEM像和元素分布图
图6  不同热压温度制备T6态SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料的界面TEM像和HAADF-STEM像
图7  560 ℃下热压的T6态SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料界面产物的TEM像和元素分布图

Hot pressing temperature

Tensile strength

MPa

Yield strength

MPa

Elongation

%

500679±13645±192.8±0.6
520675±8637±103.0±0.4
540671±6632±63.2±0.6
560658±10620±103.4±0.4
表2  不同热压温度制备T6态SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料的拉伸性能
图8  不同热压温度制备T6态SiC/Al-7.5Zn-2.8Mg-1.7Cu复合材料试样断口形貌的SEM像
[1] Song J Y, Guo Q, Ouyang Q B, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites [J]. Mater. Sci. Eng., 2015, A644: 79
[2] Xiao B L, Huang Z Z, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59
[2] (肖伯律, 黄治治, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59)
[3] Li B, Luo B H, He K J ,et al. Effect of aging on interface characteristics of Al-Mg-Si/SiC composites [J]. J. Alloys Compd., 2015, 649: 495
[4] Monazzah A H, Pouraliakbar H, Bagheri R ,et al. Al-Mg-Si/SiC laminated composites: Fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms [J]. Composites, 2017, 125B: 49
[5] Wang Z G, Li C P, Wang H Y, et al. Aging behavior of Nano-SiC/2014Al composite fabricated by powder metallurgy and hot extrusion techniques [J]. J. Mater. Sci. Technol., 2016, 32: 1008
[6] Jin P, Xiao B L, Wang Q Z ,et al. Effect of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites [J]. Mater. Sci. Eng., 2011, A528: 1504
[7] Kalkanl? A, Y?lmaz S. Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates [J]. Mater. Des., 2008, 29: 775
[8] Sharma M M, Amateau M F, Eden T J. Aging response of Al-Zn-Mg-Cu spray formed alloys and their metal matrix composites [J]. Mater. Sci. Eng., 2006, A424: 87
[9] Min K H, Lee B H, Chang S Y ,et al. Mechanical properties of sintered 7xxx series Al/SiCp composites [J]. Mater. Lett., 2007, 61: 2544
[10] Dasgupta R, Meenai H. SiC particulate dispersed composites of an Al-Zn-Mg-Cu alloy: Property comparison with parent alloy [J]. Mater. Charact., 2005, 54: 438
[11] Kumar N V R, Dwarakadasa E S. Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCp composites [J]. Composites, 2000, 31A: 1139
[12] Manoharan M, Lewandowski J J. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite [J]. Mater. Sci. Eng., 1992, A150: 179
[13] Evans R D, Boyd J D. Near-interface microstructure in a SiC/Al composite [J]. Scr. Mater., 2003, 49: 59
[14] Hong S H, Chung K H. Effects of vacuum hot pressing parameters on the tensile properties and microstructures of SiC-2124 A1 composites [J]. Mater. Sci. Eng., 1995, A194: 165
[15] Cheng N P, Zeng S M, Wang S B ,et al. Effects of forming temperature on properties of SiCP/Al composite [J]. Hot Work. Technol., 2007, 32(2): 13
[15] (程南璞, 曾苏民, 王水兵等. 成形温度对SiCP/Al复合材料性能的影响 [J]. 热加工工艺, 2007, 32(2): 13)
[16] Li Y Z, Wang Q Z, Wang W G, et al. Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites [J]. Mater. Chem. Phys., 2015, 154: 107
[17] Ma W C, Gu J L, Zhang Y ,et al. Effect of SiC particles on ageing behaviour of SiCp/7075 composites [J]. J. Mater. Sci. Lett., 1997, 16: 1867
[18] Lee K B, Kwon H. Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiC particles [J]. Metall. Mater. Trans., 2002, 33A: 455
[19] Thébaud F, Hervé E, Da Silva R ,et al. The effect of the interfacial strength on the overall mechanical properties of particle reinforced metal matrix composites [A]. 2nd International Conference on Interfacial Phenomena in Composite Materials [C]. Louvain, Belgium, 1991: 179
[20] Man C F, Mummery P M, Derby B, et al. The influence of magnesium segregation on the fracture of silicon carbide particle-reinforced aluminium metal matrix composites [A]. 2nd International Conference on Interfacial Phenomena in Composite Materials [C]. Louvain, Belgium, 1991: 175
[21] Liu Z Y, Wang Q Z, Xiao B L ,et al. Effects of double extrusion on the microstructure and tensile property of the PM processed SiCp/2009Al composites [J]. Acta Metall. Sin., 2010, 46: 1121
[21] (刘振宇, 王全兆, 肖伯律等. 二次挤压对SiCp/2009Al复合材料微观结构和力学性能的影响 [J]. 金属学报, 2010, 46: 1121)
[22] Ogel B, Gurbuz R. Microstructural characterization and tensile properties of hot pressed Al-SiC composites prepared from pure Al and Cu powders [J]. Mater. Sci. Eng., 2001, A301: 213
[23] Zhou J, Duszczyk J. Liquid phase sintering of an AA2014-based composite prepared from an elemental powder mixture [J]. J. Mater. Sci., 1999, 34: 545
[24] Zhang Q, Wang Q Z, Xiao B L, et al. Phases and elemental distributions in SiCp/Al-Cu-Mg composite fabricated by powder metallurgy [J]. Acta Metall. Sin., 2012, 48: 135
[24] (张 琪, 王全兆, 肖伯律等. 粉末冶金制备SiCp/2009Al复合材料的相组成和元素分布 [J]. 金属学报, 2012, 48: 135)
[25] Li B, Pan Q L, Chen C P ,et al. Effects of solution treatment on microstructural and mechanical properties of Al-Zn-Mg alloy by microalloying with Sc and Zr [J]. J. Alloys Compd., 2016, 664: 553
[26] Wang D, Xiao B L, Wang Q Z ,et al. Evolution of the microstructure and strength in the nugget zone of friction stir welded SiCp/Al-Cu-Mg composite [J]. J. Mater. Sci. Technol., 2014, 30: 54
[27] Kiourtsidis G E, Skolianos S M, Litsardakis G A. Aging response of aluminium alloy 2024/silicon carbide particles (SiCp) composites [J]. Mater. Sci. Eng., 2004, A382: 351
[28] Ure?a A, Mart??nez E E, Rodrigo P ,et al. Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites [J]. Compos. Sci. Technol., 2004, 64: 1843
[29] McLeod A D, Gabryel C M. Kinetics of the growth of spinel, MgAl2O4, on alumina particulate in aluminum alloys containing magnesium [J]. Metall. Mater. Trans., 1992, 23A: 1279
[30] Strangwood M, Hippsley C A, Lewandowski J J. Segregation to SiC/Al interfaces in Al based metal matrix composites [J]. Scr. Metall. Mater., 1990, 24: 1483
[31] Shi Z L, Ochiai S, Hojo M ,et al. The oxidation of SiC particles and its interfacial characteristics in Al-matrix composite [J]. J. Mater. Sci., 2001, 36: 2441
[32] Jin P, Xiao B L, Wang Q Z ,et al. Effect of hot pressing temperature on microstructure and mechanical properties of SiC particle reinforced aluminum matrix composites [J]. Acta Metall. Sin., 2011, 47: 298
[32] (金 鹏, 肖伯律, 王全兆等. 热压烧结温度对SiC颗粒增强铝基复合材料微观组织及力学性能的影响 [J]. 金属学报, 2011, 47: 298)
[33] Shin K, Chung D S, Lee S. The effect of consolidation temperature on microstructure and mechanical properties in powder metallurgy-processed 2XXX aluminum alloy composites reinforced with SiC particulates [J]. Metall. Mater. Trans., 1997, 28
[1] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[2] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[3] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[4] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[5] 王祖敏,张安,陈媛媛,黄远,王江涌. 金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
[6] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[7] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[8] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[9] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[10] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[11] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[12] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[13] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[14] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[15] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.