Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 1025-1035    DOI: 10.11900/0412.1961.2019.00340
  本期目录 | 过刊浏览 |
Ti-6Al-4V表面电子束熔覆(Ti, W)C1-x复合涂层的形成及摩擦性能
刘东雷1, 陈情1, 王德2, 张睿2, 王文琴1,4()
1.南昌大学机电工程学院 南昌 330031
2.南昌航空大学航空制造工程学院 南昌 330063
3.Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
4.清华大学摩擦学国家重点实验室 北京 100084
Formation and Friction Properties of Electron Beam Cladding (Ti, W)C1-x Composite Coatings on Ti-6Al-4V
LIU Donglei1, CHEN Qing1, WANG De2, ZHANG Rui2, Tomiko Yamaguchi3, WANG Wenqin1,4()
1. School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
2. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
3. Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
4. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
全文: PDF(4567 KB)   HTML
摘要: 

通过高能电子束熔覆技术,利用WC-10Co粉末在Ti-6Al-4V (TC4)合金表面制备了(Ti, W)C1-x复合涂层。采用SEM、EPMA和XRD等手段对不同熔覆电流下复合涂层的显微组织和相组成进行了分析,讨论了各相的形成机理;采用显微硬度计和球盘摩擦实验设备对复合涂层的显微硬度和摩擦性能进行分析,讨论了不同熔覆电流下复合涂层的摩擦机理。结果表明,3种复合涂层中WC粉末均全部分解,涂层由α-Ti、β-Ti、树枝状和块状(Ti, W)C1-x及少量W组成。复合涂层厚度为400~600 μm,涂层与基体结合性良好。与基体相比,(Ti, W)C1-x复合涂层的平均硬度和耐磨性提高2~3倍且随熔覆电流增加而降低,在熔覆电流为12 mA时,表面显微硬度最高为860 HV;熔覆电流为12和15 mA时摩擦机理分别为轻微磨粒磨损和严重的磨粒磨损,而18 mA时还伴随着少量疲劳磨损。

关键词 电子束熔覆金属基复合材料钛合金(Ti, W)C1-x    
Abstract

The (Ti, W)C1-x composite coatings were prepared on the surface of Ti-6Al-4V (TC4) alloy by high energy electron beam cladding technology using WC-10Co powder. The microstructure and phase composition of the composite coatings under different cladding currents were analyzed by SEM, EPMA and XRD, and the formation mechanism of each phase was discussed in detail. The microhardness and friction property of the composite coatings were analyzed by microhardness tester and ball-disk friction test equipment, and the friction mechanism of the composite coatings under different cladding currents was discussed. The results show that the WC powders in the three composite coatings were completely dissolved. The coating consists of α-Ti, β-Ti, dendritic and block (Ti, W)C1-x, and a small amount of W. The thickness of the coatings ranges from 400 to 600 μm, and the adhesion between the coatings and the substrate was good. Compared with the substrate, the average hardness and wear resistance of the composite coatings increased by 2~3 times and decreased with the increase of cladding current. The surface microhardness was up to 860 HV at the cladding current of 12 mA. In addition, the friction mechanism was abrasive wear at 12 mA and it became severer at 15 mA; at the cladding current of 18 mA, a little fatigue wear was also proved.

Key wordselectron-beam cladding    metal-matrix composite    Ti alloy    (Ti, W)C1-x
收稿日期: 2019-10-11     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(51765041);摩擦学国家重点实验室摩擦学科学基金项目(5KLTLF17B07)
通讯作者: 王文琴     E-mail: wangwenqin@ncu.edu.cn
Corresponding author: WANG Wenqin     E-mail: wangwenqin@ncu.edu.cn
作者简介: 刘东雷,男,1976年生,副教授,博士

引用本文:

刘东雷, 陈情, 王德, 张睿, 王文琴. Ti-6Al-4V表面电子束熔覆(Ti, W)C1-x复合涂层的形成及摩擦性能[J]. 金属学报, 2020, 56(7): 1025-1035.
Donglei LIU, Qing CHEN, De WANG, Rui ZHANG, Yamaguchi Tomiko, Wenqin WANG. Formation and Friction Properties of Electron Beam Cladding (Ti, W)C1-x Composite Coatings on Ti-6Al-4V. Acta Metall Sin, 2020, 56(7): 1025-1035.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00340      或      https://www.ams.org.cn/CN/Y2020/V56/I7/1025

图1  WC-10Co粉末的SEM像和XRD谱
图2  不同熔覆电流时3种复合涂层横截面总体形貌的SEM像
图3  不同熔覆电流时,涂层不同部位显微组织的SEM-BSE像(从左到右分别为上部、中部和界面处)
图4  不同熔覆电流下复合涂层的XRD谱
图5  不同复合涂层EPMA点分析位置BSE像
PointAlCTiWCo
11.5645.5551.390.520.97
25.47088.973.701.86
32.9330.9361.283.391.47
44.293.1486.505.240.83
51.3745.2651.440.851.08
65.02088.384.721.88
71.9531.7264.760.800.77
表1  图5中对应点的EPMA分析 (atomic fraction / %)
图6  涂层中各相的形成原理图
图7  不同熔覆电流下复合涂层的显微硬度分布图
图8  基体及不同熔覆电流下复合涂层的摩擦实验结果
图9  摩擦实验后基体和涂层表面SEM像及局部放大图
PointCOAlTiFeCoW
1042.286.4249.471.8300
22.5747.164.0325.5719.640.350.67
35.0241.335.4342.924.450.260.58
41.2546.985.5642.892.040.380.89
表2  图9中不同点的元素EDS成分分析 (atomic fraction / %)
图10  摩擦实验后基体和涂层对应的磨球表面形貌及EDS结果
图11  涂层的摩擦机理示意图
[1] Li J N, Gong S L, Wang J, et al. Influence of Cu on microstructures and wear resistance of Stellite 12 matrix laser alloying coatings on TA15-2 titanium alloy [J]. Acta Metall. Sin., 2014, 50: 547
[1] (李嘉宁, 巩水利, 王 娟等. Cu对TA15-2钛合金表面Stellite 12基激光合金化涂层组织结构及耐磨性的影响 [J]. 金属学报, 2014, 50: 547)
[2] Zhou X W, Ouyang C, Qiao Y X, et al. Analysis of toughness and strengthening mechanisms for Ni-CeO2 nanocomposites coated on the activated surface of Ti substrate [J]. Acta Metall. Sin., 2017, 53: 140
[2] (周小卫, 欧阳春, 乔岩欣等. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析 [J]. 金属学报, 2017, 53: 140)
[3] Wu P, Zhou C C, Tang X N. Wear characteristics of Ni-base alloy and Ni/WC coatings by laser cladding [J]. Acta Metall. Sin., 2002, 38: 1257
[3] (吴 萍, 周昌炽, 唐西南. 激光熔覆镍基合金和Ni/WC涂层的磨损特性 [J]. 金属学报, 2002, 38: 1257)
[4] Takesue S, Kikuchi S, Akebono H, et al. Effect of pre-treatment with fine particle peening on surface properties and wear resistance of gas blow induction heating nitrided titanium alloy [J]. Surf. Coat. Technol., 2019, 359: 476
[5] Lin Y H, Lei Y P, Fu H G, et al. Effect of Ni addition on microstructure and mechanical properties of TiB2/TiB titanium matrix composite coatings [J]. Acta Metall. Sin., 2014, 50: 1520
[5] (林英华, 雷永平, 符寒光等. Ni添加对TiB2/TiB钛基复合涂层组织与力学性能的影响 [J]. 金属学报, 2014, 50: 1520)
[6] Wang T G, Song B H, Hua W G, et al. Influence of process parameters on the performance uniformity of detonation gun sprayed WC-Co coatings [J]. Acta Metall. Sin., 2011, 47: 115
[6] (王铁钢, 宋丙红, 华伟刚等. 工艺参数对爆炸喷涂WC-Co涂层性能均匀性的影响 [J]. 金属学报, 2011, 47: 115)
[7] Molian P A, Hualun L. Laser cladding of Ti-6al-4V with BN for improved wear performance [J]. Wear, 1989, 130: 337
[8] Sun R L, Yang X J. Microstructure, friction and wear properties ofin situ synthesized TiC-TiB2/Ni-based metallic ceramic coating by laser cladding [J]. J. Chin. Ceram. Soc., 2003, 31: 1221
[8] (孙荣禄, 杨贤金. 激光熔覆原位合成TiC-TiB2/Ni基金属陶瓷涂层的组织和摩擦磨损性能 [J]. 硅酸盐学报, 2003, 31: 1221)
[9] Sun R L, Liu Y, Yang D Z. Friction and wear properties of TiCp/Ni-based laser clad layer on TC4 alloy [J]. Tribology, 2003, 23: 457
[9] (孙荣禄, 刘 勇, 杨德庄. TC4合金及其表面TiCp/Ni基合金激光熔覆层的摩擦磨损性能 [J]. 摩擦学学报, 2003, 23: 457)
[10] Mridha S, Baker T N. Metal matrix composite layers formed by laser processing of commercial purity Ti-SiCp in nitrogen environment [J]. Mater. Sci. Technol., 1996, 12: 595
[11] Zhao Z Y, Hui P F, Wang T, et al. New strategy to grow TiC coatings on titanium alloy: Contact solid carburization by cast iron [J]. J. Alloys Compd., 2018, 745: 637
doi: 10.1016/j.jallcom.2018.02.235
[12] Yang F L, Wang Y F. Properties of hundred-micron Ti/TiN multilayer composite coating on titanium alloy [J]. Surf. Technol., 2017, 46(3): 96
[12] (杨方亮, 王彦峰. 钛合金表面百微米级Ti/TiN多层复合涂层性能研究 [J]. 表面技术, 2017, 46(3): 96)
[13] Chen Y B, Liu D J, Li F Q, et al. WCp/Ti-6Al-4V graded metal matrix composites layer produced by laser melt injection [J]. Surf. Coat. Technol., 2008, 202: 4780
[14] Vreeling J A, Ocelík V, de Hosson J T M. Ti-6Al-4V strengthened by laser melt injection of WCp particles [J]. Acta Mater., 2002, 50: 4913
[15] Li L Q, Liu D J, Chen Y B, et al. Electron microscopy study of reaction layers between single-crystal WC particle and Ti-6Al-4V after laser melt injection [J]. Acta Mater., 2009, 57: 3606
[16] Liu D J, Hu P P, Min G Q. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing [J]. Opt. Laser Technol., 2015, 69: 180
[17] Chen Y B, Liu D J, Li L Q, et al. Microstructure evolution of single crystal WCp reinforced Ti-6Al-4V metal matrix composites produced at different cooling rates [J]. J. Alloys Compd., 2009, 484: 108
[18] Liu J D, Zhang S Q, Wang H M. Microstructure and wear resistance of laser cladding WC particles reinforced composite coatings [J]. Chin. J. Nonferrous Met., 2012, 22: 2600
[18] (刘建弟, 张述泉, 王华明. 激光熔覆WC颗粒增强复合涂层的组织及耐磨性[J]. 中国有色金属学报, 2012, 22: 2600)
[19] Srivastava A K, Das K. Microstructure and abrasive wear study of (Ti,W)C-reinforced high-manganese austenitic steel matrix composite [J]. Mater. Lett., 2008, 62: 3947
[20] Yang M, Guo Z X, Xiong J, et al. Microstructural changes of (Ti, W)C solid solution induced by ball milling [J]. Int. J. Refract. Met. Hard Mater., 2017, 66: 83
[21] Zhang G P, Xiong W H, Yang Q Q, et al. Effect of Mo addition on microstructure and mechanical properties of (Ti,W)C solid solution based cermets [J]. Int. J. Refract. Met. Hard Mater., 2014, 43: 77
[22] Li G J, Li J, Luo X. Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate [J]. Mater. Charact., 2014, 98: 83
[23] Yan H, Zhang P L, Yu Z S, et al. Development and characterization of laser surface cladding (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper [J]. Opt. Laser Technol., 2012, 44: 1351
[24] Wang D, Wang W Q, Wang M S, et al. Effect of operating voltage on microstructure and microhardness of NiCoCrAlYTa-Y2O3 composite coatings on single crystal superalloy produced by electrospark deposition [J]. Surf. Coat. Technol., 2019, 358: 628
[25] Daze X L, Zhu Y Y, Li Z G. Effect of laser power on microstructure and properties of laser cladding Fe- Co-B-Si-Nb coatings [J]. China Surf. Eng., 2012, 25(3): 52
[25] (达则晓丽, 朱彦彦, 李铸国. 激光功率对激光熔覆Fe-Co-B-Si-Nb涂层组织和性能的影响 [J]. 中国表面工程, 2012, 25(3): 52)
[26] Qi C Q, Zhan X H, Gao Q Y, et al. The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding [J]. Opt. Laser Technol., 2019, 119: 105572
[27] Qi C Z, Gao H, Yan F Y, et al. Study on the tribological property and positron annihilation spectroscopy of epoxy/nano-SiO2 composites [J]. Eng. Plast. Appl., 2003, 31(5): 37
[27] (齐陈泽, 高 辉, 阎逢元等. 环氧树脂/纳米SiO2复合材料摩擦学性能与正电子湮没谱的研究 [J]. 工程塑料应用, 2003, 31(5): 37)
[28] Wan M P, Zhao Y Q, Zeng W D, et al. Effect of solution temperature on microstructure and properties of Ti-1300 alloy [J]. Rare Met. Mater. Eng., 2015, 44: 1209
[28] (万明攀, 赵永庆, 曾卫东等. 固溶温度对Ti-1300合金组织与性能的影响 [J]. 稀有金属材料与工程, 2015, 44: 1209)
[29] Zhang F Y, Hu T T, Tan H, et al. Effect of heat treatment on the microstructure and hardness of novel Ti-6Al-6Mo alloy formed by laser solid forming [J]. Rare Met. Mater. Eng., 2019, 48: 357
[1] 柯林达,殷杰,朱海红,彭刚勇,孙京丽,陈昌棚,王国庆,李中权,曾晓雁. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报, 2020, 56(3): 374-384.
[2] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[3] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[4] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[5] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[6] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[7] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[8] 田银宝, 申俊琦, 胡绳荪, 勾健. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 2019, 55(11): 1407-1416.
[9] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[10] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[11] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[12] 武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展[J]. 金属学报, 2019, 55(1): 33-44.
[13] 范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
[14] 张学习, 郑忠, 高莹, 耿林. 金属基复合材料高通量制备及表征技术研究进展[J]. 金属学报, 2019, 55(1): 109-125.
[15] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.