|
|
铝合金中的溶质原子团簇及其强韧化 |
刘刚, 张鹏, 杨冲, 张金钰, 孙军( ) |
西安交通大学 金属材料强度国家重点实验室 西安 710049 |
|
Aluminum Alloys: Solute Atom Clusters and Their Strengthening |
LIU Gang, ZHANG Peng, YANG Chong, ZHANG Jinyu, SUN Jun( ) |
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
引用本文:
刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
Gang LIU,
Peng ZHANG,
Chong YANG,
Jinyu ZHANG,
Jun SUN.
Aluminum Alloys: Solute Atom Clusters and Their Strengthening[J]. Acta Metall Sin, 2021, 57(11): 1484-1498.
1 |
Wang J G, Wang Z T. Advance on wrought aluminium alloys used for aeronautic and astronautic industry (1) [J]. Light Alloy Fabricat. Technol., 2013, 41(8): 1
|
1 |
王建国, 王祝堂. 航空航天变形铝合金的进展(1) [J]. 轻合金加工技术, 2013, 41(8): 1
|
2 |
Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
|
2 |
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
|
3 |
Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2361
|
3 |
聂祚仁, 文胜平, 黄 晖等. 铒微合金化铝合金的研究进展 [J]. 中国有色金属学报, 2011, 21: 2361
|
4 |
Hahn G T, Rosenfield A R. Metallurgical factors affecting fracture toughness of aluminum alloys [J]. Metall. Trans., 1975, 6A: 653
|
5 |
Liu G, Sun J, Nan C W, et al. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys [J]. Acta Mater., 2005, 53: 3459
|
6 |
Polmear I, StJohn D, Nie J F. Light Alloys [M]. 5th Ed., Boston: Elsevier, 2017: 1
|
7 |
Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
|
8 |
Garrett G G, Knott J F. The influence of compositional and microstructural variations on the mechanism of static fracture in aluminum alloys [J]. Metall. Trans., 1978, 9A: 1187
|
9 |
Liu G, Zhang G J, Ding X D, et al. The influences of multiscale-sized second-phase particles on ductility of aged aluminum alloys [J]. Metall. Mater. Trans., 2004, 35A: 1725
|
10 |
Liu G, Zhang G J, Wang R H, et al. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys [J]. Acta Mater., 2007, 55: 273
|
11 |
Argon A S. Strengthening Mechanisms in Crystal Plasticity [M]. Oxford: Oxford University Press, 2004: 1
|
12 |
Leyson G P M, Curtin W A, Hector L G, et al. Quantitative prediction of solute strengthening in aluminium alloys [J]. Nat. Mater., 2010, 9: 750
|
13 |
Curtin W A, Olmsted D L, Hector L G. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys [J]. Nat. Mater., 2006, 5: 875
|
14 |
Zhang P, Salman O U, Zhang J Y, et al. Taming intermittent plasticity at small scales [J]. Acta Mater., 2017, 128: 351
|
15 |
Panseri C, Federighi T. On the interaction between Mg atoms and vacancies in the Al-Zn10%-Mg0.1% alloy [J]. Acta Metall., 1964, 12: 272
|
16 |
Sha G, Cerezo A. Kinetic Monte Carlo simulation of clustering in an Al-Zn-Mg-Cu alloy (7050) [J]. Acta Metall., 2005, 53: 907
|
17 |
Marceau R K W, Sha G, Ferragut R, et al. Solute clustering in Al-Cu-Mg alloys during the early stages of elevated temperature ageing [J]. Acta Metall., 2010, 58: 4923
|
18 |
Ringer S P, Hono K, Sakurai T. The effect of trace additions of Sn on precipitation in Al-Cu alloys: An atom probe field ion microscopy study [J] Metall. Mater. Trans., 1995, 26A: 2207
|
19 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
|
20 |
Ringer S P, Hono K. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies [J] Mater. Charact., 2000, 44: 101
|
21 |
Torsæter M, Hasting H S, Lefebvre W, et al. The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys [J]. J. Appl. Phys., 2010, 108: 073527
|
22 |
Abid T, Boubertakh A, Hamamda S. Effect of pre-aging and maturing on the precipitation hardening of an Al-Mg-Si alloy [J]. J. Alloys Compd., 2010, 490: 166
|
23 |
Ringer S P, Hono K, Sakurai T, et al. Cluster hardening in an aged Al-Cu-Mg alloy [J]. Scr. Mater., 1997, 36: 517
|
24 |
Fu S, Zhang Y, Liu H Q, et al. Influence of electric field on the quenched-in vacancy and solute clustering during early stage ageing of Al-Cu alloy [J]. J. Mater. Sci. Technol., 2018, 34: 335
|
25 |
Jia Z H, Ding L P, Cao L F, et al. The influence of composition on the clustering and precipitation behavior of Al-Mg-Si-Cu alloys [J]. Metall. Mater. Trans., 2017, 48A: 459
|
26 |
Kovaćs I, Lendvai J, Nagy E. The mechanism of clustering in supersaturated solid solutions of Al-Mg2Si alloys [J]. Acta Metall., 1972, 20: 975
|
27 |
Esmaeili S, Poole W J, Lloyd D J. Electrical resistivity studies on the precipitation behaviour of AA6111 [J]. Mater. Sci. Forum, 2000, 331-337: 995
|
28 |
Panseri C, Federighi T. A resistometric study of precipitation in an Aluminium-1.4 percent Mg2Si alloy [J]. Inst. Met. J., 1966, 94: 99
|
29 |
Pogatscher S. Phase Transitions in Quenched Nonferrous Metallic Systems [M]. Leoben: Montanuniversitat Leoben, 2017: 1
|
30 |
Seyedrezai H, Grebennikov D, Mascher P, et al. Study of the early stages of clustering in Al-Mg-Si alloys using the electrical resistivity measurements [J]. Mater. Sci. Eng., 2009, A525: 186
|
31 |
Banhart J, Lay M D H, Chang C S T, et al. Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy [J]. Phys. Rev., 2011, 83B: 014101
|
32 |
Liu M, Čížek J, Chang C S, et al. Early stages of solute clustering in an Al-Mg-Si alloy [J]. Acta Mater., 2015, 91: 355
|
33 |
Teixeira J D, Cram D G, Bourgeois L, et al. On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates [J]. Acta Mater., 2008, 56: 6109
|
34 |
Dutta I, Allen S M. A calorimetric study of precipitation in commercial aluminium alloy 6061 [J]. J. Mater. Sci. Lett., 1991, 10: 323
|
35 |
Kim S N, Kim J H, Tezuka H, et al. Formation behavior of nanoclusters in Al-Mg-Si alloys with different Mg and Si concentration [J]. Mater. Trans., 2013, 54: 297
|
36 |
Starink M J, Gao N, Yan J L. The origins of room temperature hardening of Al-Cu-Mg alloys [J]. Mater. Sci. Eng., 2004, A387-389: 222
|
37 |
Schloth P, Menzel A, Fife J L, et al. Early cluster formation during rapid cooling of an Al-Cu-Mg alloy: In situ small-angle X-ray scattering [J]. Scr. Mater., 2015, 108: 56
|
38 |
Schloth P, Wagner J N, Fife J L, et al. Early precipitation during cooling of an Al-Zn-Mg-Cu alloy revealed by in situ small angle X-ray scattering [J]. Appl. Phys. Lett., 2014, 105: 101908
|
39 |
Deschamps A, De Geuser F, Horita Z, et al. Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy [J]. Acta Mater., 2014, 66: 105
|
40 |
Deschamps A, Fribourg G, Bréchet Y, et al. In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2012, 60: 1905
|
41 |
Deschamps A, Bastow T J, De Geuser F, et al. In situ evaluation of the microstructure evolution during rapid hardening of an Al-2.5Cu-1.5Mg (wt.%) alloy [J]. Acta Mater., 2011, 59: 2918
|
42 |
Lay M D H, Zurob H S, Hutchinson C R, et al. Vacancy behavior and solute cluster growth during natural aging of an Al-Mg-Si alloy [J]. Metall. Mater. Trans., 2012, 43A: 4507
|
43 |
Banhart J, Chang C S T, Liang Z Q, et al. Natural aging in Al-Mg-Si alloys—A process of unexpected complexity [J]. Adv. Eng. Mater., 2010, 12: 559
|
44 |
Wang B, Wang X J, Song H, et al. Strengthening effects of microstructure evolution during early ageing process in Al-Mg-Si alloy [J]. Acta Metall. Sin., 2014, 50: 685
|
44 |
王 波, 王晓姣, 宋 辉等. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响 [J]. 金属学报, 2014, 50: 685
|
45 |
Bai S, Liu Z Y, Ying P Y, et al. Quantitative study of the solute clustering and precipitation in a pre-stretched Al-Cu-Mg-Ag alloy [J]. J. Alloys Compd., 2017, 725: 1288
|
46 |
Poznak A, Marceau R K W, Sanders P G. Composition dependent thermal stability and evolution of solute clusters in Al-Mg-Si analyzed using atom probe tomography [J]. Mater. Sci. Eng., 2018, A721: 47
|
47 |
Cairney J M, Rajan K, Haley D, et al. Mining information from atom probe data [J]. Ultramicroscopy, 2015, 159: 324
|
48 |
Xiang X M, Lai Y X, Liu C H, et al. Sn-induced modification of the precipitation pathways upon high-temperature ageing in an Al-Mg-Si alloy [J]. Acta Metall. Sin., 2018, 54: 1273
|
48 |
向雪梅, 赖玉香, 刘春辉等. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变 [J]. 金属学报, 2018, 54: 1273
|
49 |
Li J H, An Z H, Hage F S, et al. Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy [J]. Mater. Sci. Eng., 2019, A760: 366
|
50 |
Yang C, Cheng P M, Chen B A, et al. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96: 325
|
51 |
Lervik A, Thronsen E, Friis J, et al. Atomic structure of solute clusters in Al-Zn-Mg alloys [J]. Acta Mater., 2021, 205: 116574
|
52 |
Cao L F, Rometsch P A, Couper M J. Clustering behaviour in an Al-Mg-Si-Cu alloy during natural ageing and subsequent under-ageing [J]. Mater. Sci. Eng., 2013, A559: 257
|
53 |
Aruga Y, Kozuka M, Takaki Y, et al. Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2015, A631: 86
|
54 |
De Geuser F, Gault B. Metrology of small particles and solute clusters by atom probe tomography [J]. Acta Mater., 2020, 188: 406
|
55 |
Girifalco L A, Herman H. A model for the growth of Guinier-Preston zones—The vacancy pump [J]. Acta Metall., 1965, 13: 583
|
56 |
Esmaeili S, Vaumousse D, Zandbergen M W, et al. A study on the early-stage decomposition in the Al-Mg-Si-Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe [J]. Philos. Mag., 2007, 87: 3797
|
57 |
Zurob H S, Seyedrezai H. A model for the growth of solute clusters based on vacancy trapping [J]. Scr. Mater., 2009, 61: 141
|
58 |
Greenwood M, Sinclair C, Militzer M. Phase field crystal model of solute drag [J]. Acta Mater., 2012, 60: 5752
|
59 |
Berry J, Provatas N, Rottler J, et al. Phase field crystal modeling as a unified atomistic approach to defect dynamics [J]. Phys. Rev., 2014, 89B: 214117
|
60 |
Fallah V, Langelier B, Ofori-Opoku N, et al. Cluster evolution mechanisms during aging in Al-Mg-Si alloys [J]. Acta Mater., 2016, 103: 290
|
61 |
Kleiven D, Ødegård O L, Laasonen K, et al. Atomistic simulations of early stage clusters in Al-Mg alloys [J]. Acta Mater., 2019, 166: 484
|
62 |
Miyoshi H, Kimizuka H, Ishii A, et al. Temperature-dependent nucleation kinetics of Guinier-Preston zones in Al-Cu alloys: An atomistic kinetic Monte Carlo and classical nucleation theory approach [J]. Acta Mater., 2019, 179: 262
|
63 |
Du Y, Zhang L J, Cui S L, et al. Atomic mobilities and diffusivities in Al alloys [J]. Sci. China Technol. Sci., 2012, 55: 306
|
64 |
Wolverton C. Solute-vacancy binding in aluminum [J]. Acta Mater., 2007, 55: 5867
|
65 |
Peng J, Bahl S, Shyam A, et al. Solute-vacancy clustering in aluminum [J]. Acta Mater., 2020, 196: 747
|
66 |
Schmid F, Dumitraschkewitz P, Kremmer T, et al. Enhanced aging kinetics in Al-Mg-Si alloys by up-quenching [J]. Commun. Mater., 2021, 2: 58
|
67 |
Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
|
68 |
Shao D, Zhang P, Zhang J Y, et al. Effect of pre-strain on the solute clustering, mechanical properties, and work-hardening of a naturally aged Al-Cu-Mg alloy [J]. Metall. Mater. Trans., 2017, 48A: 4121
|
69 |
Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy [J]. Acta Mater., 2021, 203: 116455
|
70 |
Chen Z G, Ren J K, Yuan Z G, et al. Enhanced strength-plasticity combination in an Al-Cu-Mg alloy—Atomic scale microstructure regulation and strengthening mechanisms [J]. Mater. Sci. Eng., 2020, A787: 139447
|
71 |
Sha G, Tugcu K, Liao X Z, et al. Strength, grain refinement and solute nanostructures of an Al-Mg-Si alloy (AA6060) processed by high-pressure torsion [J]. Acta Mater., 2014, 63: 169
|
72 |
Chen J Z, Lv L X, Zhen L, et al. Precipitation strengthening model of AA 7055 aluminium alloy [J]. Acta Metall. Sin., 2021, 57: 353
|
72 |
陈军洲, 吕良星, 甄 良等. AA 7055铝合金时效析出强化模型 [J]. 金属学报, 2021, 57: 353
|
73 |
Liang M C, Chen L, Zhao G Q. Effects of artificial ageing on mechanical properties and precipitation of 2A12 Al Sheet [J]. Acta Metall. Sin., 2020, 56: 736
|
73 |
梁孟超, 陈 良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响 [J]. 金属学报, 2020, 56: 736
|
74 |
Jiang S Y, Wang R H. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1354
|
75 |
Wen S P, Gao K Y, Li Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy [J]. Scr. Mater., 2011, 65: 592
|
76 |
Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
|
76 |
高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
|
77 |
Zhang J Y, Gao Y H, Yang C, et al. Microalloying Al alloys with Sc: A review [J]. Rare Met., 2020, 39: 636
|
78 |
Sun F F, Nash G L, Li Q Y, et al. Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys [J]. J. Mater. Sci. Technol., 2017, 33: 1015
|
79 |
Gong B, Wen S P, Huang H, et al. Evolution of nanoscale Al3 (ZrxEr1-x) precipitates in Al-6Mg-0.7Mn-0.1Zr-0.3Er alloy during annealing [J]. Acta Metall. Sin., 2010, 46: 850
|
79 |
宫 博, 文胜平, 黄 晖等. 退火过程Al-6Mg-0.7Mn-0.1Zr-0.3Er合金中纳米Al3(ZrxEr1-x)析出相的演化 [J]. 金属学报, 2010, 46: 850
|
80 |
Nie J F, Muddle B C. Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates [J]. Acta Mater., 2008, 56: 3490
|
81 |
Weng Y Y, Ding L P, Zhang Z Z, et al. Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy [J]. Acta Mater., 2019, 180: 301
|
82 |
Muddle B C, Polmear I J. The precipitate Ω phase in Al-Cu-Mg-Ag alloys [J]. Acta Metall., 1989, 37: 777
|
83 |
Medrano S, Zhao H, De Geuser F, et al. Cluster hardening in Al-3Mg triggered by small Cu additions [J]. Acta Mater., 2018, 161: 12
|
84 |
Ivanov R, Deschamps A, De Geuser F. Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions [J]. Acta Mater., 2018, 157: 186
|
85 |
Hatakeyama D, Nishimura K, Matsuda K, et al. Effect of copper addition on the cluster formation behavior of Al-Mg-Si, Al-Zn-Mg, and Al-Mg-Ge in the natural aging [J]. Metall. Mater. Trans., 2018, 49A: 5871
|
86 |
Liu M, Banhart J. Effect of Cu and Ge on solute clustering in Al-Mg-Si alloys [J]. Mater. Sci. Eng., 2016, A658: 238
|
87 |
Pogatscher S, Antrekowitsch H, Werinos M, et al. Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys [J]. Phys. Rev. Lett., 2014, 112: 225701
|
88 |
Esmaeili S, Lloyd D J, Poole W J. Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111 [J]. Acta Mater., 2003, 51: 3467
|
89 |
Starink M J, Cao L F, Rometsch P A. A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys [J]. Acta Mater., 2012, 60: 4194
|
90 |
Starink M J, Wang S C. The thermodynamics of and strengthening due to co-clusters: General theory and application to the case of Al-Cu-Mg alloys [J]. Acta Mater., 2009, 57: 2376
|
91 |
Zhao Q L. Cluster strengthening in aluminium alloys [J]. Scr. Mater., 2014, 84-85: 43
|
92 |
de Vaucorbeil A, Poole W J, Sinclair C W. The superposition of strengthening contributions in engineering alloys [J]. Mater. Sci. Eng., 2013, A582: 147
|
93 |
Marceau R K W, de Vaucorbeil A, Sha G, et al. Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling [J]. Acta Mater., 2013, 61: 7285
|
94 |
Zhang P, Shi K K, Bian J J, et al. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al-Zn-Mg alloy [J]. Acta Mater., 2021, 207: 116682
|
95 |
Shi K K, Zhao X L, Zhang P, et al. Cluster-growth kinetics, plastic deformation and fracture in naturally aged Al-Zn-Mg alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 2513
|
95 |
史坤坤, 赵小龙, 张 鹏等. 自然时效Al-Zn-Mg合金团簇长大动力学及其变形断裂特性 [J]. 中国有色金属学报, 2020, 30: 2513
|
96 |
Aaron H B, Fainstein D, Kotler G R. Diffusion-limited phase transformations: A comparison and critical evaluation of the mathematical approximations [J]. J. Appl. Phys., 1970, 41: 4404
|
97 |
Meyers M A, Chawla K K. Mechanical Behavior of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 2009: 1
|
98 |
Bray G H, Glazov M, Rioja R J, et al. Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys [J]. Int. J. Fatigue, 2001, 23(suppl.): 265
|
99 |
Bai S, Liu Z Y, Zhou X W, et al. Strain-induced dissolution of Cu-Mg co-clusters and dynamic recrystallization near a fatigue crack tip of an underaged Al-Cu-Mg alloy during cyclic loading at ambient temperature [J]. Scr. Mater., 2011, 64: 1133
|
100 |
Liu M, Liu Z Y, Bai S, et al. Solute cluster size effect on the fatigue crack propagation resistance of an underaged Al-Cu-Mg alloy [J]. Int. J. Fatigue, 2016, 84: 104
|
101 |
Liu M, Liu Z Y, Bai S, et al. Analysis on the dissolution behavior of various size Cu-Mg co-clusters near a fatigue crack tip of underaged Al-Cu-Mg alloy during cyclic loading [J]. J. Alloys Compd., 2017, 699: 119
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|