Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1399-1415    DOI: 10.11900/0412.1961.2022.00370
  综述 本期目录 | 过刊浏览 |
异构金属材料的设计与制造
张显程(), 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东
华东理工大学 承压系统与安全教育部重点实验室 上海 200237
Design and Manufacture of Heterostructured Metallic Materials
ZHANG Xiancheng(), ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung
Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
引用本文:

张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
Xiancheng ZHANG, Yong ZHANG, Xiao LI, Zimeng WANG, Chenyun HE, Tiwen LU, Xiaokun WANG, Yunfei JIA, Shantung TU. Design and Manufacture of Heterostructured Metallic Materials[J]. Acta Metall Sin, 2022, 58(11): 1399-1415.

全文: PDF(3593 KB)   HTML
摘要: 

通过构筑金属异构材料以实现强韧均衡的材料设计和制造方法,已成为机械工程和材料科学等领域的前沿方向与研究热点。近年来,对异构金属材料内部多种强韧化机制的理解已逐渐深入,而建立强韧化增益效果与微观结构特征参量的定量关联,进而指导强韧化工艺研发,对异构金属材料的设计理论、制造成形及性能表征具有重要意义。本文主要综述了近年来异构金属材料的微观结构调控理论基础与常用制造工艺的进展。首先按照微观调控手段对异构金属材料进行分类,随后综述了异构金属材料微观结构调控的若干理论基础,最后以“自上而下”和“自下而上”对强韧化工艺进行分类,介绍了常见的异构金属材料制备工艺方法。在此基础上,对异构金属材料设计与制造面临的挑战和发展方向进行了讨论与展望。

关键词 异构金属材料强韧化背应力微观结构设计制备工艺    
Abstract

The design and manufacture of heterostructured metallic materials for the balanced improvement of strength and ductility by interior microstructure construction have been the research frontiers and focus in mechanical engineering and materials science. Recently, the understanding of multiple hardening mechanisms in heterostructured metallic materials has progressively advanced. Although establishing quantitative relationships between hardening effects and microstructural parameters and further instructing the research and development of manufacturing for a superior combination between strength and ductility will be of significant value to the design theory, the manufacturing processes and property characterization of heterostructured metallic materials are crucial. In this article, the research progress on the theoretical foundations of designing microstructures and manufacturing processes for heterostructured metallic materials was reviewed. First, the heterostructured metallic materials from the perspective of their microstructural regulation method were categorized. Second, the theoretical foundations for the microstructural regulation of heterostructured materials were reviewed. Third, the manufacturing process for heterostructured materials was classified in terms of the up-bottom and bottom-up approaches as well as reviewed. Finally, the challenges and future development of the design and manufacture of heterostructured metallic materials were addressed.

Key wordsheterostructured metallic material    strength and ductility    back stress    microstructural design    manufacturing process
收稿日期: 2022-08-04     
ZTFLH:  TH114  
基金资助:国家自然科学基金项目(51725503)
作者简介: 张显程,男,1979年生,教授,博士
图1  异构金属材料的分类[19~23,25,26]
图2  均匀结构与异构金属材料强韧性示意图[11,19,20,22,25~28,30]
图3  背应力计算方法与机理示意图[33,35]
图4  微观结构特征参量对异构金属材料力学性能的影响[26,38,50]
图5  软相排布对力学性能的影响[62]
图6  微观结构参数对纳米孪晶金属力学性能的影响[63,71,72,74]
图7  孪晶厚度对多级孪晶金属力学性能的影响[76,77]
图8  异质金属材料制造技术手段的分类原理图
图9  表面强化工艺示意图以及其主要的工艺参数[29,84,87,89,91]
图10  块体剧烈塑性变形工艺以及其主要的工艺参数[96,99,100,103]
图11  自下而上设计法及其主要工艺参数[104,107,108,119]
1 Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866 pmid: 20395503
2 Gunderov D V, Polyakov A V, Semenova I P, et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing [J]. Mater. Sci. Eng., 2013, A562: 128
3 Zou H H, Zeng X Q, Zhai C Q, et al. Development in strengthening and toughening of magnesium alloys [J]. Mater. Mech. Eng., 2004, 28(5): 1
3 邹宏辉, 曾小勤, 翟春泉 等. 镁合金的强韧化进展 [J]. 机械工程材料, 2004, 28(5): 1
4 Liu P, Kang B X, Cao X G, et al. Coherent strengthening of aging precipitation in rapidly solidified Cu-Cr alloy [J]. Acta Metall. Sin., 1999, 35: 561
4 刘 平, 康布熙, 曹兴国 等. 快速凝固Cu-Cr合金时效析出的共格强化效应 [J]. 金属学报, 1999, 35: 561
5 Yan S, Liu X H, Liu W J, et al. Microstructure, mechanical properties and strengthening mechanisms of a Cu bearing low-carbon steel treated by Q&P process [J]. Acta Metall. Sin., 2013, 49: 917
doi: 10.3724/SP.J.1037.2013.00176
5 闫 述, 刘相华, 刘伟杰 等. 含Cu低碳钢Q&P工艺处理的组织性能与强化机理 [J]. 金属学报, 2013, 49: 917
6 Studart A R. Towards high-performance bioinspired composites [J]. Adv. Mater., 2012, 24: 5024
doi: 10.1002/adma.201201471
7 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
8 Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578 pmid: 24136963
9 Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
10 Sun L G, He X Q, Lu J. Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts [J]. npj Comput. Mater., 2018, 4: 6
doi: 10.1038/s41524-018-0062-2
11 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
12 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
13 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
14 Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
15 Misra A, Göken M, Mara N A, et al. Hierarchical and heterogeneous multiphase metallic nanomaterials and laminates [J]. MRS Bull., 2021, 46: 236
doi: 10.1557/s43577-021-00059-7
16 Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties [J]. Prog. Mater. Sci., 2022, 123: 100709
doi: 10.1016/j.pmatsci.2020.100709
17 Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
18 Li J G, Zhang Q, Huang R R, et al. Towards understanding the structure-property relationships of heterogeneous-structured materials [J]. Scr. Mater., 2020, 186: 304
doi: 10.1016/j.scriptamat.2020.05.013
19 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
20 Li G D, Morinaka S, Kawabata M, et al. Improvement of strength with maintaining ductility of harmonic structure pure copper by cold rolling and annealing process [J]. Procedia Manuf., 2018, 15: 1641
21 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
22 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
23 Duan F H, Lin Y, Pan J, et al. Ultrastrong nanotwinned pure nickel with extremely fine twin thickness [J]. Sci. Adv., 2021, 7: eabg5113
doi: 10.1126/sciadv.abg5113
24 Shukla S, Choudhuri D, Wang T H, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy [J]. Mater. Res. Lett., 2018, 6: 676
doi: 10.1080/21663831.2018.1538023
25 Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
26 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
27 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
28 Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580 pmid: 24686581
29 Liu X C, Zhang H W, Lu K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment [J]. Acta Mater., 2015, 96: 24
doi: 10.1016/j.actamat.2015.06.014
30 Zhang X Z, Wang Y M, Chen T J, et al. Achieving a heterogeneous lamella-structured aluminum alloy with excellent synergy of strength and ductility by powder thixoforming [J]. Mater. Sci. Eng., 2022, A838: 142781
31 Zhang X H, Lilleodden E, Wang J. Recent trends on studies of nanostructured metals [J]. MRS Bull., 2021, 46: 217
doi: 10.1557/s43577-021-00069-5
32 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
33 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
34 Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J]. Acta Mater., 1999, 47: 3617
doi: 10.1016/S1359-6454(99)00222-0
35 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
36 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
37 Wang Y F, Huang C X, Fang X T, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient [J]. Scr. Mater., 2020, 174: 19
doi: 10.1016/j.scriptamat.2019.08.022
38 Zhang Y, Chen H, Jia Y F, et al. A modified kinematic hardening model considering hetero-deformation induced hardening for bimodal structure based on crystal plasticity [J]. Int. J. Mech. Sci., 2021, 191: 106068
doi: 10.1016/j.ijmecsci.2020.106068
39 Zhao J F, Lu X C, Yuan F P, et al. Multiple mechanism based constitutive modeling of gradient nanograined material [J]. Int. J. Plast., 2020, 125: 314
doi: 10.1016/j.ijplas.2019.09.018
40 Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
41 Lu X C, Zhang X, Shi M X, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper [J]. Int. J. Plast., 2019, 113: 52
doi: 10.1016/j.ijplas.2018.09.007
42 Li J J, Weng G J, Chen S H, et al. On strain hardening mechanism in gradient nanostructures [J]. Int. J. Plast., 2017, 88: 89
doi: 10.1016/j.ijplas.2016.10.003
43 Hill R. The Mathematical Theory of Plasticity [M]. New York: Oxford University Press, 1998: 1
44 Lin Y, Pan J, Zhou H F, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel [J]. Acta Mater., 2018, 153: 279
doi: 10.1016/j.actamat.2018.04.065
45 He C Y, Yang X F, Chen H, et al. Size-dependent deformation mechanisms in copper gradient nano-grained structure: A molecular dynamics simulation [J]. Mater. Today Commun., 2022, 31: 103198
46 Cao P H. The strongest size in gradient nanograined metals [J]. Nano Lett., 2020, 20: 1440
doi: 10.1021/acs.nanolett.9b05202 pmid: 31944115
47 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
48 Zhao J F, Kan Q H, Zhou L C, et al. Deformation mechanisms based constitutive modelling and strength-ductility mapping of gradient nano-grained materials [J]. Mater. Sci. Eng., 2019, A742: 400
49 Zhao J F, Zaiser M, Lu X C, et al. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities [J]. Int. J. Plast., 2021, 145: 103063
doi: 10.1016/j.ijplas.2021.103063
50 Shin S, Zhu C Y, Zhang C, et al. Extraordinary strength-ductility synergy in a heterogeneous-structured β-Ti alloy through microstructural optimization [J]. Mater. Res. Lett., 2019, 7: 467
doi: 10.1080/21663831.2019.1652856
51 Huang J X, Liu Y, Xu T, et al. Dual-phase hetero-structured strategy to improve ductility of a low carbon martensitic steel [J]. Mater. Sci. Eng., 2022, A834: 142584
52 Liu X L, Xue Q Q, Wang W, et al. Back-stress-induced strengthening and strain hardening in dual-phase steel [J]. Materialia, 2019, 7: 100376
doi: 10.1016/j.mtla.2019.100376
53 Demeri M Y. Advanced High-Strength Steels: Science, Technology, and Applications [M]. Materials Park: ASM International, 2013: 1
54 Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
55 Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
56 Mishra R S, Haridas R S, Agrawal P. High entropy alloys—Tunability of deformation mechanisms through integration of compositional and microstructural domains [J]. Mater. Sci. Eng., 2021, A812: 141085
57 Raabe D, Sun B H, Da Silva A K, et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels [J]. Metall. Mater. Trans., 2020, 51A: 5517
58 Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface [J]. Acta Mater., 2019, 178: 10
doi: 10.1016/j.actamat.2019.07.043
59 Ma Y, Sun B H, Schökel A, et al. Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels [J]. Acta Mater., 2020, 200: 389
doi: 10.1016/j.actamat.2020.09.007
60 Liu Y F, Cao Y, Mao Q Z, et al. Critical microstructures and defects in heterostructured materials and their effects on mechanical properties [J]. Acta Mater., 2020, 189: 129
doi: 10.1016/j.actamat.2020.03.001
61 Flipon B, Keller C, Quey R, et al. A full-field crystal-plasticity analysis of bimodal polycrystals [J]. Int. J. Solids Struct., 2020, 184: 178
doi: 10.1016/j.ijsolstr.2019.02.005
62 Zhang Y, Zhang X C, Jia Y F, et al. High density of interfaces with severely mechanical difference controlled high ductility in heterogeneous materials based on crystal plasticity [J]. Metall. Mater. Trans. A, 2022, DOI: 10.1007/s11661-022-06794-z .
63 Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641 pmid: 19179523
64 Shen Y F, Lu L, Lu Q H, et al. Tensile properties of copper with nano-scale twins [J]. Scr. Mater., 2005, 52: 989
doi: 10.1016/j.scriptamat.2005.01.033
65 Wang L H, Du K, Yang C P, et al. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum [J]. Nat. Commun., 2020, 11: 1167
doi: 10.1038/s41467-020-14876-y pmid: 32127536
66 Zhang Y, Tao N R, Lu K. Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles [J]. Acta Mater., 2008, 56: 2429
doi: 10.1016/j.actamat.2008.01.030
67 Lu L, Lu K. Metallic materials with nano-scale twins [J]. Acta Metall. Sin., 2010, 46: 1422
doi: 10.3724/SP.J.1037.2010.01422
67 卢 磊, 卢 柯. 纳米孪晶金属材料 [J]. 金属学报, 2010, 46: 1422
68 Zhu Y T, Liao X Z, Wu X L. Deformation twinning in nanocrystalline materials [J]. Prog. Mater. Sci., 2012, 57: 1
doi: 10.1016/j.pmatsci.2011.05.001
69 Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464: 877
doi: 10.1038/nature08929
70 Ullman R. Deformation kinetics, A. S. Krausz and H. Eyring, Wiley-Interscience, New York, 1975, 398 pp. $24.95 [Z]. J. Polym. Sci.: Polym. Lett. Ed., 1976: 245
71 Lu L, Dao M, Zhu T, et al. Size dependence of rate-controlling deformation mechanisms in nanotwinned copper [J]. Scr. Mater., 2009, 60: 1062
doi: 10.1016/j.scriptamat.2008.12.039
72 Zhao Y H, Liao X Z, Horita Z, et al. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys [J]. Mater. Sci. Eng., 2008, A493: 123
73 You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
74 Zhang S, Zhou J Q, Wang L, et al. Effect of twin boundaries on nanovoid growth based on dislocation emission [J]. Mater. Sci. Eng., 2013, A582: 29
75 Sun L G, He X Q, Zhu L L, et al. Two softening stages in nanotwinned Cu [J]. Philos. Mag., 2014, 94: 4037
doi: 10.1080/14786435.2014.977368
76 Zhu L L, Qu S X, Guo X, et al. Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model [J]. J. Mech. Phys. Solids, 2015, 76: 162
doi: 10.1016/j.jmps.2014.12.001
77 Yuan F P, Wu X L. Size effects of primary/secondary twins on the atomistic deformation mechanisms in hierarchically nanotwinned metals [J]. J. Appl. Phys., 2013, 113: 203516
doi: 10.1063/1.4808096
78 Zhu L L, Kou H N, Lu J. On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals [J]. Appl. Phys. Lett., 2012, 101: 081906
79 Li L, Zhu Y L. Microstructure characteristics of ultrasound-aided deep rolling treated Ti6Al4V alloy [J]. Rare Met. Mater. Eng., 2010, 39: 1754
79 李 礼, 朱有利. Ti6Al4V合金超声深滚层的组织结构特征 [J]. 稀有金属材料与工程, 2010, 39: 1754
80 Lapovok R, Orlov D, Timokhina I B, et al. Asymmetric rolling of interstitial-free steel using one idle roll [J]. Metall. Mater. Trans., 2012, 43A: 1328
81 Dehm G, Jaya B N, Raghavan R, et al. Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales [J]. Acta Mater., 2018, 142: 248
doi: 10.1016/j.actamat.2017.06.019
82 Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nat. Commun., 2017, 8: 287
doi: 10.1038/s41467-017-00392-z
83 Hosemann P, Shin C, Kiener D. Small scale mechanical testing of irradiated materials [J]. J. Mater. Res., 2015, 30: 1231
doi: 10.1557/jmr.2015.26
84 Yang Z, Zheng J Y, Zhan K, et al. Surface characteristic and wear resistance of S960 high-strength steel after shot peening combing with ultrasonic sprayed graphene oxide coating [J]. J. Mater. Res. Technol., 2022, 18: 978
doi: 10.1016/j.jmrt.2022.02.124
85 Jayalakshmi M, Huilgol P, Bhat B R, et al. Insights into formation of gradient nanostructured (GNS) layer and deformation induced martensite in AISI 316 stainless steel subjected to severe shot peening [J]. Surf. Coat. Technol., 2018, 344: 295
doi: 10.1016/j.surfcoat.2018.03.028
86 Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials—Presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
doi: 10.1179/026708399101505581
87 Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, A375-377: 38
88 Li W L, Tao N R, Lu K. Fabrication of a gradient nano-microstructured surface layer on bulk copper by means of a surface mechanical grinding treatment [J]. Scr. Mater., 2008, 59: 546
doi: 10.1016/j.scriptamat.2008.05.003
89 Chui P F, Sun K N, Sun C, et al. Effect of surface nanocrystallization induced by fast multiple rotation rolling on mechanical properties of a low carbon steel [J]. Mater. Des., 2012, 35: 754
doi: 10.1016/j.matdes.2011.10.042
90 Wang T, Wang D P, Liu G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing [J]. Appl. Surf. Sci., 2008, 255: 1824
doi: 10.1016/j.apsusc.2008.06.034
91 Geng J L, Yan Z F, Zhang H X, et al. Effect of ultrasonic surface rolling process on microstructure and properties of AZ31B magnesium alloy [J]. Surf. Technol., 2022, 51(1): 368
91 耿纪龙, 闫志峰, 张红霞 等. 超声表面滚压处理对AZ31B镁合金组织和性能的影响 [J]. 表面技术, 2022, 51(1): 368
92 Zhang Y L, Lai F Q, Qu S G, et al. Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel [J]. Surf. Coat. Technol., 2019, 366: 321
doi: 10.1016/j.surfcoat.2019.03.061
93 Cao X J, Pyoun Y S, Murakami R. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification [J]. Appl. Surf. Sci., 2010, 256: 6297
doi: 10.1016/j.apsusc.2010.04.007
94 Zhang K M, Wang J, Liu Y X, et al. Active and passive compliant force control of ultrasonic surface rolling process on a curved surface [J]. Chin. J. Aeronaut., 2022, 35: 289
doi: 10.1016/j.cja.2021.08.018
95 Zhang C, Wang Y F, Lv H Y, et al. Enhanced load transfer and ductility in Al-9Ce alloy through heterogeneous lamellar microstructure design by cold rolling and annealing [J]. Mater. Sci. Eng., 2021, A821: 141591
96 Moazzen P, Toroghinejad M R. Enhancement of mechanical properties of a novel single phase Ni1.5FeCrCu0.5 HEA through cold rolling and subsequent annealing [J]. Mater. Sci. Eng., 2022, A848: 143360
97 Sabooni S, Karimzadeh F, Enayati M H, et al. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel [J]. Mater. Sci. Eng., 2015, A636: 221
98 Babapour A, Hosseinipour S J, Jamaati R, et al. Effect of antimony addition and asymmetric cold rolling on the texture and magnetic properties of a 1.2% Si steel [J]. J. Magn. Magn. Mater., 2022, 554: 169258
doi: 10.1016/j.jmmm.2022.169258
99 Ren X W, Huang Y C, Liu Y, et al. Evolution of microstructure, texture, and mechanical properties in a twin-roll cast AA6016 sheet after asymmetric rolling with various velocity ratios between top and bottom rolls [J]. Mater. Sci. Eng., 2020, A788: 139448
100 Oliveira P H F, Magalhães D C C, Unti L F K, et al. Tailoring the microstructure of a Cu-0.7Cr-0.07Zr alloy submitted to ECAP at cryogenic temperature for improved thermal stability [J]. Mater. Charact., 2022, 190: 112045
doi: 10.1016/j.matchar.2022.112045
101 Sun C, Liu H, Wang C, et al. Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance [J]. J. Alloys Compd., 2022, 911: 165046
doi: 10.1016/j.jallcom.2022.165046
102 Li L Y, Ou L, Fan C H, et al. Research progress of accumulative roll bonding [J]. Packaging J., 2021, 13(4): 70
102 李林艳, 欧 玲, 范才河 等. 累积叠轧技术研究进展 [J]. 包装学报, 2021, 13(4): 70
103 Ma X L, Huang C X, Xu W Z, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material [J]. Scr. Mater., 2015, 103: 57
doi: 10.1016/j.scriptamat.2015.03.006
104 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
105 Aliofkhazraei M, Walsh F C, Zangari G, et al. Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications [J]. Appl. Surf. Sci. Adv., 2021, 6: 100141
doi: 10.1016/j.apsadv.2021.100141
106 Daryadel S, Behroozfar A, Morsali S R, et al. Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures [J]. Nano Lett., 2018, 18: 208
doi: 10.1021/acs.nanolett.7b03930 pmid: 29257699
107 Ameyama K, Cazes F, Couque H, et al. Harmonic structure, a promising microstructure design [J]. Mater. Res. Lett., 2022, 10: 440
doi: 10.1080/21663831.2022.2057203
108 Tan C L, Chew Y, Weng F, et al. Laser aided additive manufacturing of spatially heterostructured steels [J]. Int. J. Mach. Tools Manuf., 2022, 172: 103817
doi: 10.1016/j.ijmachtools.2021.103817
109 Shen X X, Lian J S, Jiang Z H, et al. High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution [J]. Mater. Sci. Eng., 2008, A487: 410
110 Shen X, Lian J, Jiang Z, et al. The optimal grain sized nanocrystalline Ni with high strength and good ductility fabricated by a direct current electrodeposition [J]. Adv. Eng. Mater., 2008, 10: 539
doi: 10.1002/adem.200800009
111 You Z S, Lu L, Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2011, 59: 6927
doi: 10.1016/j.actamat.2011.07.044
112 Xue Z M, Zhu Z W, Zhan X F, et al. Manipulating the microstructure of Cu from direct current electrodeposition without additives to overcome the strength-ductility trade-off [J]. Mater. Sci. Eng., 2022, A849: 143499
113 Zhang Q, Liu Y, Liu Y S, et al. Enhanced tensile ductility and strength of electrodeposited ultrafine-grained nickel with a desired bimodal microstructure [J]. Mater. Sci. Eng., 2017, A701: 196
114 Cui R H, Yu Z M, He Y T, et al. Copper multilayer coating prepared by ultrasonic-electrodeposition [J]. Adv. Mater. Res., 2010, 97-101: 1348
115 Ota M, Vajpai S K, Imao R, et al. Application of high pressure gas jet mill process to fabricate high performance harmonic structure designed pure titanium [J]. Mater. Trans., 2015, 56: 154
doi: 10.2320/matertrans.M2014280
116 Nukui Y, kubozono H, kikuchi S, et al. Fractographic analysis of fatigue crack initiation and propagation in CP titanium with a bimodal harmonic structure [J]. Mater. Sci. Eng., 2018, A716: 228
117 Vajpai S K, Ota M, Zhang Z, et al. Three-dimensionally gradient harmonic structure design: An integrated approach for high performance structural materials [J]. Mater. Res. Lett., 2016, 4: 191
doi: 10.1080/21663831.2016.1218965
118 Yang L B, Ren X N, Ge C C, et al. Status and development of powder metallurgy nickel-based disk superalloys [J]. Int. J. Mater. Res., 2019, 110: 901
doi: 10.3139/146.111820
119 Sharma B, Dirras G, Ameyama K. Harmonic structure design: A strategy for outstanding mechanical properties in structural materials [J]. Metals, 2020, 10: 1615
doi: 10.3390/met10121615
120 Torralba J M, Alvaredo P, García-Junceda A. Powder metallurgy and high-entropy alloys: Update on new opportunities [J]. Powder Metall., 2020, 63: 227
doi: 10.1080/00325899.2020.1807713
121 Vajpai S K, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution [J]. Metall. Mater. Trans., 2015, 46A: 903
122 Wang X, Li J, Cazes F, et al. Numerical modeling on strengthening mechanisms of the harmonic structured design on CP-Ti and Ti-6Al-4V [J]. Int. J. Plast., 2020, 133: 102793
doi: 10.1016/j.ijplas.2020.102793
123 Fu X W, Tan Z Q, Min X R, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying [J]. Mater. Res. Lett., 2021, 9: 50
doi: 10.1080/21663831.2020.1818324
124 Lu T W, Yao N, Chen H, et al. Exceptional strength-ductility combination of additively manufactured high-entropy alloy matrix composites reinforced with TiC nanoparticles at room and cryogenic temperatures [J]. Addit. Manuf., 2022, 56: 102918
125 Yao N, Lu T W, Feng K, et al. Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient and cryogenic temperatures [J]. Acta Mater., 2022, 236: 118142
doi: 10.1016/j.actamat.2022.118142
126 Sagong M J, Kim E S, Park J M, et al. Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel [J]. Mater. Sci. Eng., 2022, A847: 143318
[1] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[2] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[3] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[4] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[5] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[6] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[7] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[8] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[9] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[10] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[11] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[12] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[13] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[14] 李殿中; 张玉妥; 刘实; 李依依 . 材料制备工艺的计算机模拟[J]. 金属学报, 2001, 37(5): 449-452 .
[15] 周义刚; 曾卫东; 李晓芹; 俞汉清; 曹春晓 . 钛合金高温形变强韧化机理[J]. 金属学报, 1999, 35(1): 45-48 .