|
|
异构金属材料的设计与制造 |
张显程( ), 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东 |
华东理工大学 承压系统与安全教育部重点实验室 上海 200237 |
|
Design and Manufacture of Heterostructured Metallic Materials |
ZHANG Xiancheng( ), ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung |
Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China |
引用本文:
张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
Xiancheng ZHANG,
Yong ZHANG,
Xiao LI,
Zimeng WANG,
Chenyun HE,
Tiwen LU,
Xiaokun WANG,
Yunfei JIA,
Shantung TU.
Design and Manufacture of Heterostructured Metallic Materials[J]. Acta Metall Sin, 2022, 58(11): 1399-1415.
1 |
Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866
pmid: 20395503
|
2 |
Gunderov D V, Polyakov A V, Semenova I P, et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing [J]. Mater. Sci. Eng., 2013, A562: 128
|
3 |
Zou H H, Zeng X Q, Zhai C Q, et al. Development in strengthening and toughening of magnesium alloys [J]. Mater. Mech. Eng., 2004, 28(5): 1
|
3 |
邹宏辉, 曾小勤, 翟春泉 等. 镁合金的强韧化进展 [J]. 机械工程材料, 2004, 28(5): 1
|
4 |
Liu P, Kang B X, Cao X G, et al. Coherent strengthening of aging precipitation in rapidly solidified Cu-Cr alloy [J]. Acta Metall. Sin., 1999, 35: 561
|
4 |
刘 平, 康布熙, 曹兴国 等. 快速凝固Cu-Cr合金时效析出的共格强化效应 [J]. 金属学报, 1999, 35: 561
|
5 |
Yan S, Liu X H, Liu W J, et al. Microstructure, mechanical properties and strengthening mechanisms of a Cu bearing low-carbon steel treated by Q&P process [J]. Acta Metall. Sin., 2013, 49: 917
doi: 10.3724/SP.J.1037.2013.00176
|
5 |
闫 述, 刘相华, 刘伟杰 等. 含Cu低碳钢Q&P工艺处理的组织性能与强化机理 [J]. 金属学报, 2013, 49: 917
|
6 |
Studart A R. Towards high-performance bioinspired composites [J]. Adv. Mater., 2012, 24: 5024
doi: 10.1002/adma.201201471
|
7 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
8 |
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578
pmid: 24136963
|
9 |
Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
|
10 |
Sun L G, He X Q, Lu J. Nanotwinned and hierarchical nanotwinned metals: A review of experimental, computational and theoretical efforts [J]. npj Comput. Mater., 2018, 4: 6
doi: 10.1038/s41524-018-0062-2
|
11 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
12 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
13 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
14 |
Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
|
15 |
Misra A, Göken M, Mara N A, et al. Hierarchical and heterogeneous multiphase metallic nanomaterials and laminates [J]. MRS Bull., 2021, 46: 236
doi: 10.1557/s43577-021-00059-7
|
16 |
Sathiyamoorthi P, Kim H S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties [J]. Prog. Mater. Sci., 2022, 123: 100709
doi: 10.1016/j.pmatsci.2020.100709
|
17 |
Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
|
18 |
Li J G, Zhang Q, Huang R R, et al. Towards understanding the structure-property relationships of heterogeneous-structured materials [J]. Scr. Mater., 2020, 186: 304
doi: 10.1016/j.scriptamat.2020.05.013
|
19 |
Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
20 |
Li G D, Morinaka S, Kawabata M, et al. Improvement of strength with maintaining ductility of harmonic structure pure copper by cold rolling and annealing process [J]. Procedia Manuf., 2018, 15: 1641
|
21 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
22 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
23 |
Duan F H, Lin Y, Pan J, et al. Ultrastrong nanotwinned pure nickel with extremely fine twin thickness [J]. Sci. Adv., 2021, 7: eabg5113
doi: 10.1126/sciadv.abg5113
|
24 |
Shukla S, Choudhuri D, Wang T H, et al. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy [J]. Mater. Res. Lett., 2018, 6: 676
doi: 10.1080/21663831.2018.1538023
|
25 |
Yang M X, Yuan F P, Xie Q G, et al. Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel [J]. Acta Mater., 2016, 109: 213
doi: 10.1016/j.actamat.2016.02.044
|
26 |
Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
|
27 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
28 |
Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580
pmid: 24686581
|
29 |
Liu X C, Zhang H W, Lu K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment [J]. Acta Mater., 2015, 96: 24
doi: 10.1016/j.actamat.2015.06.014
|
30 |
Zhang X Z, Wang Y M, Chen T J, et al. Achieving a heterogeneous lamella-structured aluminum alloy with excellent synergy of strength and ductility by powder thixoforming [J]. Mater. Sci. Eng., 2022, A838: 142781
|
31 |
Zhang X H, Lilleodden E, Wang J. Recent trends on studies of nanostructured metals [J]. MRS Bull., 2021, 46: 217
doi: 10.1557/s43577-021-00069-5
|
32 |
Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
|
33 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
34 |
Feaugas X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress [J]. Acta Mater., 1999, 47: 3617
doi: 10.1016/S1359-6454(99)00222-0
|
35 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
36 |
Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
|
37 |
Wang Y F, Huang C X, Fang X T, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient [J]. Scr. Mater., 2020, 174: 19
doi: 10.1016/j.scriptamat.2019.08.022
|
38 |
Zhang Y, Chen H, Jia Y F, et al. A modified kinematic hardening model considering hetero-deformation induced hardening for bimodal structure based on crystal plasticity [J]. Int. J. Mech. Sci., 2021, 191: 106068
doi: 10.1016/j.ijmecsci.2020.106068
|
39 |
Zhao J F, Lu X C, Yuan F P, et al. Multiple mechanism based constitutive modeling of gradient nanograined material [J]. Int. J. Plast., 2020, 125: 314
doi: 10.1016/j.ijplas.2019.09.018
|
40 |
Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
|
41 |
Lu X C, Zhang X, Shi M X, et al. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper [J]. Int. J. Plast., 2019, 113: 52
doi: 10.1016/j.ijplas.2018.09.007
|
42 |
Li J J, Weng G J, Chen S H, et al. On strain hardening mechanism in gradient nanostructures [J]. Int. J. Plast., 2017, 88: 89
doi: 10.1016/j.ijplas.2016.10.003
|
43 |
Hill R. The Mathematical Theory of Plasticity [M]. New York: Oxford University Press, 1998: 1
|
44 |
Lin Y, Pan J, Zhou H F, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel [J]. Acta Mater., 2018, 153: 279
doi: 10.1016/j.actamat.2018.04.065
|
45 |
He C Y, Yang X F, Chen H, et al. Size-dependent deformation mechanisms in copper gradient nano-grained structure: A molecular dynamics simulation [J]. Mater. Today Commun., 2022, 31: 103198
|
46 |
Cao P H. The strongest size in gradient nanograined metals [J]. Nano Lett., 2020, 20: 1440
doi: 10.1021/acs.nanolett.9b05202
pmid: 31944115
|
47 |
Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
|
48 |
Zhao J F, Kan Q H, Zhou L C, et al. Deformation mechanisms based constitutive modelling and strength-ductility mapping of gradient nano-grained materials [J]. Mater. Sci. Eng., 2019, A742: 400
|
49 |
Zhao J F, Zaiser M, Lu X C, et al. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities [J]. Int. J. Plast., 2021, 145: 103063
doi: 10.1016/j.ijplas.2021.103063
|
50 |
Shin S, Zhu C Y, Zhang C, et al. Extraordinary strength-ductility synergy in a heterogeneous-structured β-Ti alloy through microstructural optimization [J]. Mater. Res. Lett., 2019, 7: 467
doi: 10.1080/21663831.2019.1652856
|
51 |
Huang J X, Liu Y, Xu T, et al. Dual-phase hetero-structured strategy to improve ductility of a low carbon martensitic steel [J]. Mater. Sci. Eng., 2022, A834: 142584
|
52 |
Liu X L, Xue Q Q, Wang W, et al. Back-stress-induced strengthening and strain hardening in dual-phase steel [J]. Materialia, 2019, 7: 100376
doi: 10.1016/j.mtla.2019.100376
|
53 |
Demeri M Y. Advanced High-Strength Steels: Science, Technology, and Applications [M]. Materials Park: ASM International, 2013: 1
|
54 |
Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
|
55 |
Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
56 |
Mishra R S, Haridas R S, Agrawal P. High entropy alloys—Tunability of deformation mechanisms through integration of compositional and microstructural domains [J]. Mater. Sci. Eng., 2021, A812: 141085
|
57 |
Raabe D, Sun B H, Da Silva A K, et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels [J]. Metall. Mater. Trans., 2020, 51A: 5517
|
58 |
Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface [J]. Acta Mater., 2019, 178: 10
doi: 10.1016/j.actamat.2019.07.043
|
59 |
Ma Y, Sun B H, Schökel A, et al. Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels [J]. Acta Mater., 2020, 200: 389
doi: 10.1016/j.actamat.2020.09.007
|
60 |
Liu Y F, Cao Y, Mao Q Z, et al. Critical microstructures and defects in heterostructured materials and their effects on mechanical properties [J]. Acta Mater., 2020, 189: 129
doi: 10.1016/j.actamat.2020.03.001
|
61 |
Flipon B, Keller C, Quey R, et al. A full-field crystal-plasticity analysis of bimodal polycrystals [J]. Int. J. Solids Struct., 2020, 184: 178
doi: 10.1016/j.ijsolstr.2019.02.005
|
62 |
Zhang Y, Zhang X C, Jia Y F, et al. High density of interfaces with severely mechanical difference controlled high ductility in heterogeneous materials based on crystal plasticity [J]. Metall. Mater. Trans. A, 2022, DOI: 10.1007/s11661-022-06794-z .
|
63 |
Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323: 607
doi: 10.1126/science.1167641
pmid: 19179523
|
64 |
Shen Y F, Lu L, Lu Q H, et al. Tensile properties of copper with nano-scale twins [J]. Scr. Mater., 2005, 52: 989
doi: 10.1016/j.scriptamat.2005.01.033
|
65 |
Wang L H, Du K, Yang C P, et al. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum [J]. Nat. Commun., 2020, 11: 1167
doi: 10.1038/s41467-020-14876-y
pmid: 32127536
|
66 |
Zhang Y, Tao N R, Lu K. Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles [J]. Acta Mater., 2008, 56: 2429
doi: 10.1016/j.actamat.2008.01.030
|
67 |
Lu L, Lu K. Metallic materials with nano-scale twins [J]. Acta Metall. Sin., 2010, 46: 1422
doi: 10.3724/SP.J.1037.2010.01422
|
67 |
卢 磊, 卢 柯. 纳米孪晶金属材料 [J]. 金属学报, 2010, 46: 1422
|
68 |
Zhu Y T, Liao X Z, Wu X L. Deformation twinning in nanocrystalline materials [J]. Prog. Mater. Sci., 2012, 57: 1
doi: 10.1016/j.pmatsci.2011.05.001
|
69 |
Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464: 877
doi: 10.1038/nature08929
|
70 |
Ullman R. Deformation kinetics, A. S. Krausz and H. Eyring, Wiley-Interscience, New York, 1975, 398 pp. $24.95 [Z]. J. Polym. Sci.: Polym. Lett. Ed., 1976: 245
|
71 |
Lu L, Dao M, Zhu T, et al. Size dependence of rate-controlling deformation mechanisms in nanotwinned copper [J]. Scr. Mater., 2009, 60: 1062
doi: 10.1016/j.scriptamat.2008.12.039
|
72 |
Zhao Y H, Liao X Z, Horita Z, et al. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys [J]. Mater. Sci. Eng., 2008, A493: 123
|
73 |
You Z S, Li X Y, Gui L J, et al. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals [J]. Acta Mater., 2013, 61: 217
doi: 10.1016/j.actamat.2012.09.052
|
74 |
Zhang S, Zhou J Q, Wang L, et al. Effect of twin boundaries on nanovoid growth based on dislocation emission [J]. Mater. Sci. Eng., 2013, A582: 29
|
75 |
Sun L G, He X Q, Zhu L L, et al. Two softening stages in nanotwinned Cu [J]. Philos. Mag., 2014, 94: 4037
doi: 10.1080/14786435.2014.977368
|
76 |
Zhu L L, Qu S X, Guo X, et al. Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model [J]. J. Mech. Phys. Solids, 2015, 76: 162
doi: 10.1016/j.jmps.2014.12.001
|
77 |
Yuan F P, Wu X L. Size effects of primary/secondary twins on the atomistic deformation mechanisms in hierarchically nanotwinned metals [J]. J. Appl. Phys., 2013, 113: 203516
doi: 10.1063/1.4808096
|
78 |
Zhu L L, Kou H N, Lu J. On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals [J]. Appl. Phys. Lett., 2012, 101: 081906
|
79 |
Li L, Zhu Y L. Microstructure characteristics of ultrasound-aided deep rolling treated Ti6Al4V alloy [J]. Rare Met. Mater. Eng., 2010, 39: 1754
|
79 |
李 礼, 朱有利. Ti6Al4V合金超声深滚层的组织结构特征 [J]. 稀有金属材料与工程, 2010, 39: 1754
|
80 |
Lapovok R, Orlov D, Timokhina I B, et al. Asymmetric rolling of interstitial-free steel using one idle roll [J]. Metall. Mater. Trans., 2012, 43A: 1328
|
81 |
Dehm G, Jaya B N, Raghavan R, et al. Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales [J]. Acta Mater., 2018, 142: 248
doi: 10.1016/j.actamat.2017.06.019
|
82 |
Gao H L, Chen S M, Mao L B, et al. Mass production of bulk artificial nacre with excellent mechanical properties [J]. Nat. Commun., 2017, 8: 287
doi: 10.1038/s41467-017-00392-z
|
83 |
Hosemann P, Shin C, Kiener D. Small scale mechanical testing of irradiated materials [J]. J. Mater. Res., 2015, 30: 1231
doi: 10.1557/jmr.2015.26
|
84 |
Yang Z, Zheng J Y, Zhan K, et al. Surface characteristic and wear resistance of S960 high-strength steel after shot peening combing with ultrasonic sprayed graphene oxide coating [J]. J. Mater. Res. Technol., 2022, 18: 978
doi: 10.1016/j.jmrt.2022.02.124
|
85 |
Jayalakshmi M, Huilgol P, Bhat B R, et al. Insights into formation of gradient nanostructured (GNS) layer and deformation induced martensite in AISI 316 stainless steel subjected to severe shot peening [J]. Surf. Coat. Technol., 2018, 344: 295
doi: 10.1016/j.surfcoat.2018.03.028
|
86 |
Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials—Presentation of the concept behind a new approach [J]. J. Mater. Sci. Technol., 1999, 15: 193
doi: 10.1179/026708399101505581
|
87 |
Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng., 2004, A375-377: 38
|
88 |
Li W L, Tao N R, Lu K. Fabrication of a gradient nano-microstructured surface layer on bulk copper by means of a surface mechanical grinding treatment [J]. Scr. Mater., 2008, 59: 546
doi: 10.1016/j.scriptamat.2008.05.003
|
89 |
Chui P F, Sun K N, Sun C, et al. Effect of surface nanocrystallization induced by fast multiple rotation rolling on mechanical properties of a low carbon steel [J]. Mater. Des., 2012, 35: 754
doi: 10.1016/j.matdes.2011.10.042
|
90 |
Wang T, Wang D P, Liu G, et al. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing [J]. Appl. Surf. Sci., 2008, 255: 1824
doi: 10.1016/j.apsusc.2008.06.034
|
91 |
Geng J L, Yan Z F, Zhang H X, et al. Effect of ultrasonic surface rolling process on microstructure and properties of AZ31B magnesium alloy [J]. Surf. Technol., 2022, 51(1): 368
|
91 |
耿纪龙, 闫志峰, 张红霞 等. 超声表面滚压处理对AZ31B镁合金组织和性能的影响 [J]. 表面技术, 2022, 51(1): 368
|
92 |
Zhang Y L, Lai F Q, Qu S G, et al. Effect of ultrasonic surface rolling on microstructure and rolling contact fatigue behavior of 17Cr2Ni2MoVNb steel [J]. Surf. Coat. Technol., 2019, 366: 321
doi: 10.1016/j.surfcoat.2019.03.061
|
93 |
Cao X J, Pyoun Y S, Murakami R. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification [J]. Appl. Surf. Sci., 2010, 256: 6297
doi: 10.1016/j.apsusc.2010.04.007
|
94 |
Zhang K M, Wang J, Liu Y X, et al. Active and passive compliant force control of ultrasonic surface rolling process on a curved surface [J]. Chin. J. Aeronaut., 2022, 35: 289
doi: 10.1016/j.cja.2021.08.018
|
95 |
Zhang C, Wang Y F, Lv H Y, et al. Enhanced load transfer and ductility in Al-9Ce alloy through heterogeneous lamellar microstructure design by cold rolling and annealing [J]. Mater. Sci. Eng., 2021, A821: 141591
|
96 |
Moazzen P, Toroghinejad M R. Enhancement of mechanical properties of a novel single phase Ni1.5FeCrCu0.5 HEA through cold rolling and subsequent annealing [J]. Mater. Sci. Eng., 2022, A848: 143360
|
97 |
Sabooni S, Karimzadeh F, Enayati M H, et al. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel [J]. Mater. Sci. Eng., 2015, A636: 221
|
98 |
Babapour A, Hosseinipour S J, Jamaati R, et al. Effect of antimony addition and asymmetric cold rolling on the texture and magnetic properties of a 1.2% Si steel [J]. J. Magn. Magn. Mater., 2022, 554: 169258
doi: 10.1016/j.jmmm.2022.169258
|
99 |
Ren X W, Huang Y C, Liu Y, et al. Evolution of microstructure, texture, and mechanical properties in a twin-roll cast AA6016 sheet after asymmetric rolling with various velocity ratios between top and bottom rolls [J]. Mater. Sci. Eng., 2020, A788: 139448
|
100 |
Oliveira P H F, Magalhães D C C, Unti L F K, et al. Tailoring the microstructure of a Cu-0.7Cr-0.07Zr alloy submitted to ECAP at cryogenic temperature for improved thermal stability [J]. Mater. Charact., 2022, 190: 112045
doi: 10.1016/j.matchar.2022.112045
|
101 |
Sun C, Liu H, Wang C, et al. Anisotropy investigation of an ECAP-processed Mg-Al-Ca-Mn alloy with synergistically enhanced mechanical properties and corrosion resistance [J]. J. Alloys Compd., 2022, 911: 165046
doi: 10.1016/j.jallcom.2022.165046
|
102 |
Li L Y, Ou L, Fan C H, et al. Research progress of accumulative roll bonding [J]. Packaging J., 2021, 13(4): 70
|
102 |
李林艳, 欧 玲, 范才河 等. 累积叠轧技术研究进展 [J]. 包装学报, 2021, 13(4): 70
|
103 |
Ma X L, Huang C X, Xu W Z, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material [J]. Scr. Mater., 2015, 103: 57
doi: 10.1016/j.scriptamat.2015.03.006
|
104 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
105 |
Aliofkhazraei M, Walsh F C, Zangari G, et al. Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications [J]. Appl. Surf. Sci. Adv., 2021, 6: 100141
doi: 10.1016/j.apsadv.2021.100141
|
106 |
Daryadel S, Behroozfar A, Morsali S R, et al. Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures [J]. Nano Lett., 2018, 18: 208
doi: 10.1021/acs.nanolett.7b03930
pmid: 29257699
|
107 |
Ameyama K, Cazes F, Couque H, et al. Harmonic structure, a promising microstructure design [J]. Mater. Res. Lett., 2022, 10: 440
doi: 10.1080/21663831.2022.2057203
|
108 |
Tan C L, Chew Y, Weng F, et al. Laser aided additive manufacturing of spatially heterostructured steels [J]. Int. J. Mach. Tools Manuf., 2022, 172: 103817
doi: 10.1016/j.ijmachtools.2021.103817
|
109 |
Shen X X, Lian J S, Jiang Z H, et al. High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution [J]. Mater. Sci. Eng., 2008, A487: 410
|
110 |
Shen X, Lian J, Jiang Z, et al. The optimal grain sized nanocrystalline Ni with high strength and good ductility fabricated by a direct current electrodeposition [J]. Adv. Eng. Mater., 2008, 10: 539
doi: 10.1002/adem.200800009
|
111 |
You Z S, Lu L, Lu K. Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins [J]. Acta Mater., 2011, 59: 6927
doi: 10.1016/j.actamat.2011.07.044
|
112 |
Xue Z M, Zhu Z W, Zhan X F, et al. Manipulating the microstructure of Cu from direct current electrodeposition without additives to overcome the strength-ductility trade-off [J]. Mater. Sci. Eng., 2022, A849: 143499
|
113 |
Zhang Q, Liu Y, Liu Y S, et al. Enhanced tensile ductility and strength of electrodeposited ultrafine-grained nickel with a desired bimodal microstructure [J]. Mater. Sci. Eng., 2017, A701: 196
|
114 |
Cui R H, Yu Z M, He Y T, et al. Copper multilayer coating prepared by ultrasonic-electrodeposition [J]. Adv. Mater. Res., 2010, 97-101: 1348
|
115 |
Ota M, Vajpai S K, Imao R, et al. Application of high pressure gas jet mill process to fabricate high performance harmonic structure designed pure titanium [J]. Mater. Trans., 2015, 56: 154
doi: 10.2320/matertrans.M2014280
|
116 |
Nukui Y, kubozono H, kikuchi S, et al. Fractographic analysis of fatigue crack initiation and propagation in CP titanium with a bimodal harmonic structure [J]. Mater. Sci. Eng., 2018, A716: 228
|
117 |
Vajpai S K, Ota M, Zhang Z, et al. Three-dimensionally gradient harmonic structure design: An integrated approach for high performance structural materials [J]. Mater. Res. Lett., 2016, 4: 191
doi: 10.1080/21663831.2016.1218965
|
118 |
Yang L B, Ren X N, Ge C C, et al. Status and development of powder metallurgy nickel-based disk superalloys [J]. Int. J. Mater. Res., 2019, 110: 901
doi: 10.3139/146.111820
|
119 |
Sharma B, Dirras G, Ameyama K. Harmonic structure design: A strategy for outstanding mechanical properties in structural materials [J]. Metals, 2020, 10: 1615
doi: 10.3390/met10121615
|
120 |
Torralba J M, Alvaredo P, García-Junceda A. Powder metallurgy and high-entropy alloys: Update on new opportunities [J]. Powder Metall., 2020, 63: 227
doi: 10.1080/00325899.2020.1807713
|
121 |
Vajpai S K, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique microstructural design with bimodal grain size distribution [J]. Metall. Mater. Trans., 2015, 46A: 903
|
122 |
Wang X, Li J, Cazes F, et al. Numerical modeling on strengthening mechanisms of the harmonic structured design on CP-Ti and Ti-6Al-4V [J]. Int. J. Plast., 2020, 133: 102793
doi: 10.1016/j.ijplas.2020.102793
|
123 |
Fu X W, Tan Z Q, Min X R, et al. Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying [J]. Mater. Res. Lett., 2021, 9: 50
doi: 10.1080/21663831.2020.1818324
|
124 |
Lu T W, Yao N, Chen H, et al. Exceptional strength-ductility combination of additively manufactured high-entropy alloy matrix composites reinforced with TiC nanoparticles at room and cryogenic temperatures [J]. Addit. Manuf., 2022, 56: 102918
|
125 |
Yao N, Lu T W, Feng K, et al. Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient and cryogenic temperatures [J]. Acta Mater., 2022, 236: 118142
doi: 10.1016/j.actamat.2022.118142
|
126 |
Sagong M J, Kim E S, Park J M, et al. Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel [J]. Mater. Sci. Eng., 2022, A847: 143318
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|