Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 522-536    DOI: 10.11900/0412.1961.2022.00523
  研究论文 本期目录 | 过刊浏览 |
锂离子电池用微米厚度超薄集流体Cu箔和Al箔疲劳强度及损伤行为
程福来1,2, 罗雪梅1(), 胡炳利1,2, 张滨3, 张广平1()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery
CHENG Fulai1,2, LUO Xuemei1(), HU Bingli1,2, ZHANG Bin3, ZHANG Guangping1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

程福来, 罗雪梅, 胡炳利, 张滨, 张广平. 锂离子电池用微米厚度超薄集流体Cu箔和Al箔疲劳强度及损伤行为[J]. 金属学报, 2024, 60(4): 522-536.
Fulai CHENG, Xuemei LUO, Bingli HU, Bin ZHANG, Guangping ZHANG. Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery[J]. Acta Metall Sin, 2024, 60(4): 522-536.

全文: PDF(3694 KB)   HTML
摘要: 

随着高性能、高能量密度锂离子电池的飞速发展,锂离子电池用集流体金属箔轻薄化已成为行业技术升级的一个重要方向,随着集流体厚度的减小,其疲劳失效问题变得日益突出。本工作通过拉-拉疲劳实验和EBSD技术研究了循环载荷作用下锂离子电池用集流体Cu箔和Al箔的高周疲劳强度及失效行为。结果表明,Cu箔疲劳裂纹主要萌生于较大晶粒内部的滑移带处,并沿滑移带扩展。基于对损伤晶粒微观结构的观察和统计分析,获得了Cu箔疲劳裂纹萌生和材料微观结构(晶粒尺寸及其变异系数、晶粒取向、Schmid因子(Ω))的统计关系图。Al箔由于表面含有轧制缺陷,其疲劳裂纹优先在表面加工缺陷处萌生。通过极值统计法成功预测了Al箔样品中可能的缺陷分布以及存在的最大缺陷尺寸,并基于Kitagawa-Takahashi图建立了缺陷尺寸与疲劳极限之间的关系。

关键词 高周疲劳裂纹萌生超薄箔Kitagawa-Takahashi图集流体锂离子电池    
Abstract

With the rapid development of high-performance and high-energy-density lithium-ion batteries, lightweight current collector metal foils for lithium-ion batteries have become a crucial direction of industrial technological advancements. As the thickness of the current collector decreases, the fatigue failure problem becomes increasingly prominent. Once the fatigue failure of the current collector occurs, it will have a catastrophic impact on the electrochemical and safety performances of lithium-ion batteries. Here, to further clarify the fatigue damage mechanism of current collector foils, the high cycle fatigue strength and fatigue failure behavior of current collector Cu and Al foils for lithium-ion batteries under cyclic loading were experimentally investigated using tensile-tensile fatigue test and the EBSD technique. Results show that the fatigue cracks of the Cu foils mainly originate from the slip bands with larger grain sizes and propagate along the slip bands. Based on the microstructure observation and analysis of damaged grains, a statistical relationship between fatigue crack initiation and microstructure (grain size and its coefficient of variation, grain orientation, and Schmid factor (Ω)) of the Cu foils was obtained. Due to the presence of rolled defects on the surface of Al foils, the fatigue cracks are preferentially initiated at the surface defects. Extreme value statistics accurately predicted the possible defect population and the largest defect size in the Al foils, and the relationship between the defect size and fatigue limit was established using the Kitagawa-Takahashi diagram.

Key wordshigh cycle fatigue    crack initiation    ultrathin foil    Kitagawa-Takahashi diagram    current collector    lithium-ion battery
收稿日期: 2022-10-14     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(52071319)
通讯作者: 张广平,gpzhang@imr.ac.cn,主要从事金属材料疲劳与断裂研究;
罗雪梅,xmluo@imr.ac.cn,主要从事金属材料疲劳与断裂研究
Corresponding author: ZHANG Guangping, professor, Tel:(024)23971938, E-mail: gpzhang@imr.ac.cn;
LUO Xuemei, associate professor, Tel:(024)83978029, E-mail: xmluo@imr.ac.cn
作者简介: 程福来,男,1997年生,博士生
图1  6和8 μm厚度Cu箔表面SEM像、微观结构TEM像及晶粒尺寸分布图
图2  不同厚度Cu箔的工程应力-应变曲线以及应力幅-疲劳寿命曲线
图3  8 μm厚Cu箔高周疲劳试样在应力幅92 MPa、总寿命为4 × 106 cyc下的损伤萌生位点微观结构以及损伤特征

Slip

system

(1¯11)(111)(111¯)(1¯11¯)
[011¯][1¯01¯][110][011¯][1¯01][1¯10][011][1¯01¯][1¯10][110][1¯01][011]
Parent0.4970.200.300.220.060.280.230.110.340.320.160.48
Twin0.190.040.150.350.150.200.300.150.450.4970.260.24
表1  根据图3b中基体和孪晶的12个滑移系计算的Schmid因子(Ω)
图4  10和13 μm厚度Al箔表面SEM像、微观结构TEM像及晶粒尺寸分布图
图5  不同厚度Al箔的工程应力-应变曲线以及应力幅-疲劳寿命曲线
图6  Al箔表面三维形貌图、表面缺陷示意图以及不同厚度Al箔缺陷尺寸和缺陷参数(area)分布
图7  13 μm厚Al箔高周疲劳试样在应力幅64 MPa、总寿命为1.4 × 106 cyc的表面损伤形貌SEM像、裂纹的高倍SEM像以及裂纹附近的EBSD像
图8  有利于Cu箔疲劳裂纹萌生的晶粒特点
图9  损伤晶粒及周围晶粒不均匀性示意图以及有利于裂纹萌生的晶粒不均匀性特点
图10  极值统计法预测最大缺陷尺寸
图11  不同厚度Al箔的Kitagawa-Takahashi图
ThicknessPredictedExperimental
μm

G(area)

%

areamax
μm

σw

MPa

σw

MPa

Deviation

%

10956.135149+4.1
13955.135354-1.9
表2  10和13 μm厚Al箔的疲劳极限预测值与实验值
1 Zhang J Q, Lu B, Song Y C, et al. Diffusion induced stress in layered Li-ion battery electrode plates[J]. J. Power Sources, 2012, 209: 220
doi: 10.1016/j.jpowsour.2012.02.104
2 Song Y C, Li Z Z, Zhang J Q. Reducing diffusion induced stress in planar electrodes by plastic shakedown and cyclic plasticity of current collector[J]. J. Power Sources, 2014, 263: 22
doi: 10.1016/j.jpowsour.2014.04.007
3 He Y L, Hu H J, Song Y C, et al. Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes[J]. J. Power Sources, 2014, 248: 517
doi: 10.1016/j.jpowsour.2013.09.118
4 Suresh S. Fatigue of Materials[M]. 2nd Ed., Cambridge: Cambridge University Press, 1998: 95
5 Thompson N, Wadsworth N, Louat N. The origin of fatigue fracture in copper[J]. Philos. Mag., 1956, 1: 113
doi: 10.1080/14786435608238086
6 Grosskreutz J C, Waldow P. Substructure and fatigue fracture in aluminum[J]. Acta Metall., 1963, 11: 717
doi: 10.1016/0001-6160(63)90009-9
7 Boettner R C, McEvily A J, Liu Y C. On the formation of fatigue cracks at twin boundaries[J]. Philos. Mag., 1964, 10: 95
8 Dai C Y, Zhang B, Xu J, et al. On size effects on fatigue properties of metal foils at micrometer scales[J]. Mater. Sci. Eng., 2013, A575: 217
9 Wan H Y, Chen G F, Li C P, et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. J. Mater. Sci. Technol., 2019, 35: 1137
doi: 10.1016/j.jmst.2018.12.011
10 Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Prog. Mater. Sci., 2021, 117: 100724
doi: 10.1016/j.pmatsci.2020.100724
11 Tang M, Pistorius P C. Fatigue life prediction for AlSi10Mg components produced by selective laser melting[J]. Int. J. Fatigue, 2019, 125: 479
doi: 10.1016/j.ijfatigue.2019.04.015
12 Wu Z K, Wu S C, Bao J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. Int. J. Fatigue, 2021, 151: 106317
doi: 10.1016/j.ijfatigue.2021.106317
13 Atxaga G, Pelayo A, Irisarri A M. Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy[J]. Mater. Sci. Technol., 2001, 17: 446
doi: 10.1179/026708301101510023
14 Jiang H, Bowen P, Knott J F. Fatigue performance of a cast aluminium alloy Al-7Si-Mg with surface defects[J]. J. Mater. Sci., 1999, 34: 719
doi: 10.1023/A:1004560510632
15 El Khoukhi D, Morel F, Saintier N, et al. Probabilistic modeling of the size effect and scatter in high cycle fatigue using a Monte-Carlo approach: Role of the defect population in cast aluminum alloys[J]. Int. J. Fatigue, 2021, 147: 106177
doi: 10.1016/j.ijfatigue.2021.106177
16 Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. Int. J. Fatigue, 2017, 94: 178
doi: 10.1016/j.ijfatigue.2016.06.020
17 Gong H J, Rafi K, Gu H F, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Mater. Des., 2015, 86: 545
doi: 10.1016/j.matdes.2015.07.147
18 Dezecot S, Maurel V, Buffiere J Y, et al. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy[J]. Acta Mater., 2017, 123: 24
doi: 10.1016/j.actamat.2016.10.028
19 Murakami Y. Material defects as the basis of fatigue design[J]. Int. J. Fatigue, 2012, 41: 2
doi: 10.1016/j.ijfatigue.2011.12.001
20 Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size[J]. Int. J. Fatigue, 1989, 11: 299
doi: 10.1016/0142-1123(89)90055-8
21 Wu S C, Song Z, Kang G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography[J]. Int. J. Fatigue, 2019, 125: 210
doi: 10.1016/j.ijfatigue.2019.04.002
22 Zerbst U, Bruno G, Buffière J Y, et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges[J]. Prog. Mater. Sci., 2021, 121: 100786
doi: 10.1016/j.pmatsci.2021.100786
23 Li P. Investigation on the cyclic deformation behaviors of face-centered cubic crystals[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
23 李 鹏. 面心立方晶体循环形变行为研究[D]. 沈阳: 中国科学院金属研究所, 2009
24 An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
25 Wong M, Kao W, Lui J, et al. Cyclic deformation of ultrafine-grained aluminum[J]. Acta Mater., 2007, 55: 715
doi: 10.1016/j.actamat.2006.09.002
26 Zhang Z J, Zhang P, Zhang Z F. Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys[J]. Acta Mater., 2016, 121: 331
doi: 10.1016/j.actamat.2016.09.020
27 An X H, Lin Q Y, Wu S D, et al. Improved fatigue strengths of nanocrystalline Cu and Cu Al alloys[J]. Mater. Res. Lett., 2015, 3: 135
doi: 10.1080/21663831.2015.1029645
28 Glushko O, Kiener D. Initiation of fatigue damage in ultrafine grained metal films[J]. Acta Mater., 2021, 206: 116599
doi: 10.1016/j.actamat.2020.116599
29 Mönig R. Thermal fatigue of Cu thin films[D]. Stuttgart: Universität Stuttgart, 2005
30 Schwaiger R, Kraft O. Size effects in the fatigue behavior of thin Ag films[J]. Acta Mater., 2003, 51: 195
doi: 10.1016/S1359-6454(02)00391-9
31 Stinville J C, Vanderesse N, Bridier F, et al. High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy[J]. Acta Mater., 2015, 98: 29
doi: 10.1016/j.actamat.2015.07.016
32 Stinville J C, Lenthe W C, Miao J, et al. A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy[J]. Acta Mater., 2016, 103: 461
doi: 10.1016/j.actamat.2015.09.050
33 Stinville J C, Lenthe W C, Echlin M P, et al. Microstructural statistics for fatigue crack initiation in polycrystalline nickel-base superalloys[J]. Int. J. Fract., 2017, 208: 221
doi: 10.1007/s10704-017-0241-z
34 Dai C Y, Zhang G P, Yan C. Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale[J]. Philos. Mag., 2011, 91: 932
doi: 10.1080/14786435.2010.538017
35 Judelewicz M. Cyclic deformation of 100 μm thin polycrystalline copper foils[J]. Scr. Metall. Mater., 1993, 29: 1463
doi: 10.1016/0956-716X(93)90337-R
36 Judelewicz M, Künzi H U, Merk N, et al. Microstructural development during fatigue of copper foils 20-100 μm thick[J]. Mater. Sci. Eng., 1994, A186: 135
37 Hong S, Weil R. Low cycle fatigue of thin copper foils[J]. Thin Solid Films, 1996, 283: 175
doi: 10.1016/0040-6090(95)08225-5
38 Kammuri K, Kitamura M, Fujii T, et al. Effects of thickness and crystallographic orientation on fatigue life of single-crystalline copper foils[J]. Mater. Trans., 2015, 56: 200
doi: 10.2320/matertrans.M2014352
39 Lavenstein S, Gu Y J, Madisetti D, et al. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale[J]. Science, 2020, 370: eabb2690
doi: 10.1126/science.abb2690
40 Xu K N, Song Y C, Lu B, et al. Design of ultrathin current collectors via cyclically plastic yield for fabrication of high capacity lithium ion batteries[J]. J. Electrochem. Soc., 2020, 167: 110557
doi: 10.1149/1945-7111/aba702
41 Mughrabi H, Höppel H W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys[J]. Int. J. Fatigue, 2010, 32: 1413
doi: 10.1016/j.ijfatigue.2009.10.007
42 Saitova L R, Höppel H W, Göken M, et al. Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use[J]. Int. J. Fatigue, 2009, 31: 322
doi: 10.1016/j.ijfatigue.2008.08.007
43 Hall E O. Variation of hardness of metals with grain size[J]. Nature, 1954, 173: 948
44 Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. Int. J. Fatigue, 1994, 16: 163
doi: 10.1016/0142-1123(94)90001-9
45 Cortes C, Vapnik V. Support-vector networks[J]. Mach. Learn., 1995, 20: 273
46 Ding S F, An Y X, Zhang X K, et al. Wavelet twin support vector machines based on glowworm swarm optimization[J]. Neurocomputing, 2017, 225: 157
doi: 10.1016/j.neucom.2016.11.026
47 Zhou Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 122
47 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 122
48 Calzada M E, Scariano S M. A synthetic control chart for the coefficient of variation[J]. J. Stat. Comput. Sim., 2013, 83: 853
doi: 10.1080/00949655.2011.639772
49 Krishnamoorthy K, Lee M. Improved tests for the equality of normal coefficients of variation[J]. Computation. Stat., 2014, 29: 215
50 Chen H L, Luo X M, Wang D, et al. Achieving very high cycle fatigue performance of Au thin films for flexible electronic applications[J]. J. Mater. Sci. Technol., 2021, 89: 107
doi: 10.1016/j.jmst.2021.02.025
51 Zhao P, Chen B, Kelleher J, et al. High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium[J]. Acta Mater., 2019, 174: 29
doi: 10.1016/j.actamat.2019.05.038
52 Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials[J]. Fatigue Fract. Eng. Mater. Struct., 1998, 21: 1049
doi: 10.1046/j.1460-2695.1998.00104.x
53 El Haddad M H, Topper T H, Smith K N. Prediction of non propagating cracks[J]. Eng. Fract. Mech., 1979, 11: 573
doi: 10.1016/0013-7944(79)90081-X
54 Herold H, Streitenberger M, Zinke M, et al. An experimental and theoretical approach for an estimation of ΔKth [J]. Fatigue Fract. Eng. Mater. Struct., 2000, 23: 805
doi: 10.1046/j.1460-2695.2000.00314.x
55 Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Mater. Sci. Eng., 2013, A564: 331
56 Wang B B, Wu L H, Xue P, et al. Improved high cycle fatigue property of ultrafine grained pure aluminum[J]. Mater. Lett., 2020, 277: 128289
doi: 10.1016/j.matlet.2020.128289
57 Lee Y K, O'Keefe T J. Evaluating and monitoring nucleation and growth in copper foil[J]. JOM, 2002, 54(4): 37
58 Kondo K, Murakami H. Crystal growth of electrolytic Cu foil[J]. J. Electrochem. Soc., 2004, 151: C514
doi: 10.1149/1.1756883
59 Lin Y M, Yen S C. Effects of additives and chelating agents on electroless copper plating[J]. Appl. Surf. Sci., 2001, 178: 116
doi: 10.1016/S0169-4332(01)00306-3
60 Liao Z Y, Yang S T. Analysis and discussion on effect factors of aluminum foil rolling process[J]. Nonferrous Met. Process., 2014, 43(1): 21
60 廖志宇, 杨松涛. 铝箔轧制工艺影响因素的分析与探讨[J]. 有色金属加工, 2014, 43(1): 21
61 Niu M, Zhao G H. Effect of aluminium stock quality on aluminium foil rolling and aluminium foil quality[J]. Light Alloy Fabr. Technol., 2003, 31(12): 20
61 牛 猛, 赵光辉. 铝箔毛料质量对铝箔轧制生产的影响[J]. 轻合金加工技术, 2003, 31(12): 20
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[4] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[5] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[6] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
[7] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[8] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[9] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[10] 王晋, 张跃飞, 马晋遥, 李吉学, 张泽. Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635.
[11] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[12] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[13] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[14] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[15] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.