|
|
锂离子电池用微米厚度超薄集流体Cu箔和Al箔疲劳强度及损伤行为 |
程福来1,2, 罗雪梅1( ), 胡炳利1,2, 张滨3, 张广平1( ) |
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 3 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 |
|
Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery |
CHENG Fulai1,2, LUO Xuemei1( ), HU Bingli1,2, ZHANG Bin3, ZHANG Guangping1( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
程福来, 罗雪梅, 胡炳利, 张滨, 张广平. 锂离子电池用微米厚度超薄集流体Cu箔和Al箔疲劳强度及损伤行为[J]. 金属学报, 2024, 60(4): 522-536.
Fulai CHENG,
Xuemei LUO,
Bingli HU,
Bin ZHANG,
Guangping ZHANG.
Fatigue Strength and Damage Behavior of Micron-Thick Ultrathin Current Collector Cu Foil and Al Foil for Lithium-Ion Battery[J]. Acta Metall Sin, 2024, 60(4): 522-536.
1 |
Zhang J Q, Lu B, Song Y C, et al. Diffusion induced stress in layered Li-ion battery electrode plates[J]. J. Power Sources, 2012, 209: 220
doi: 10.1016/j.jpowsour.2012.02.104
|
2 |
Song Y C, Li Z Z, Zhang J Q. Reducing diffusion induced stress in planar electrodes by plastic shakedown and cyclic plasticity of current collector[J]. J. Power Sources, 2014, 263: 22
doi: 10.1016/j.jpowsour.2014.04.007
|
3 |
He Y L, Hu H J, Song Y C, et al. Effects of concentration-dependent elastic modulus on the diffusion of lithium ions and diffusion induced stress in layered battery electrodes[J]. J. Power Sources, 2014, 248: 517
doi: 10.1016/j.jpowsour.2013.09.118
|
4 |
Suresh S. Fatigue of Materials[M]. 2nd Ed., Cambridge: Cambridge University Press, 1998: 95
|
5 |
Thompson N, Wadsworth N, Louat N. The origin of fatigue fracture in copper[J]. Philos. Mag., 1956, 1: 113
doi: 10.1080/14786435608238086
|
6 |
Grosskreutz J C, Waldow P. Substructure and fatigue fracture in aluminum[J]. Acta Metall., 1963, 11: 717
doi: 10.1016/0001-6160(63)90009-9
|
7 |
Boettner R C, McEvily A J, Liu Y C. On the formation of fatigue cracks at twin boundaries[J]. Philos. Mag., 1964, 10: 95
|
8 |
Dai C Y, Zhang B, Xu J, et al. On size effects on fatigue properties of metal foils at micrometer scales[J]. Mater. Sci. Eng., 2013, A575: 217
|
9 |
Wan H Y, Chen G F, Li C P, et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. J. Mater. Sci. Technol., 2019, 35: 1137
doi: 10.1016/j.jmst.2018.12.011
|
10 |
Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review[J]. Prog. Mater. Sci., 2021, 117: 100724
doi: 10.1016/j.pmatsci.2020.100724
|
11 |
Tang M, Pistorius P C. Fatigue life prediction for AlSi10Mg components produced by selective laser melting[J]. Int. J. Fatigue, 2019, 125: 479
doi: 10.1016/j.ijfatigue.2019.04.015
|
12 |
Wu Z K, Wu S C, Bao J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. Int. J. Fatigue, 2021, 151: 106317
doi: 10.1016/j.ijfatigue.2021.106317
|
13 |
Atxaga G, Pelayo A, Irisarri A M. Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy[J]. Mater. Sci. Technol., 2001, 17: 446
doi: 10.1179/026708301101510023
|
14 |
Jiang H, Bowen P, Knott J F. Fatigue performance of a cast aluminium alloy Al-7Si-Mg with surface defects[J]. J. Mater. Sci., 1999, 34: 719
doi: 10.1023/A:1004560510632
|
15 |
El Khoukhi D, Morel F, Saintier N, et al. Probabilistic modeling of the size effect and scatter in high cycle fatigue using a Monte-Carlo approach: Role of the defect population in cast aluminum alloys[J]. Int. J. Fatigue, 2021, 147: 106177
doi: 10.1016/j.ijfatigue.2021.106177
|
16 |
Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. Int. J. Fatigue, 2017, 94: 178
doi: 10.1016/j.ijfatigue.2016.06.020
|
17 |
Gong H J, Rafi K, Gu H F, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Mater. Des., 2015, 86: 545
doi: 10.1016/j.matdes.2015.07.147
|
18 |
Dezecot S, Maurel V, Buffiere J Y, et al. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy[J]. Acta Mater., 2017, 123: 24
doi: 10.1016/j.actamat.2016.10.028
|
19 |
Murakami Y. Material defects as the basis of fatigue design[J]. Int. J. Fatigue, 2012, 41: 2
doi: 10.1016/j.ijfatigue.2011.12.001
|
20 |
Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size[J]. Int. J. Fatigue, 1989, 11: 299
doi: 10.1016/0142-1123(89)90055-8
|
21 |
Wu S C, Song Z, Kang G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography[J]. Int. J. Fatigue, 2019, 125: 210
doi: 10.1016/j.ijfatigue.2019.04.002
|
22 |
Zerbst U, Bruno G, Buffière J Y, et al. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges[J]. Prog. Mater. Sci., 2021, 121: 100786
doi: 10.1016/j.pmatsci.2021.100786
|
23 |
Li P. Investigation on the cyclic deformation behaviors of face-centered cubic crystals[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009
|
23 |
李 鹏. 面心立方晶体循环形变行为研究[D]. 沈阳: 中国科学院金属研究所, 2009
|
24 |
An X H, Wu S D, Wang Z G, et al. Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200
doi: 10.1016/j.actamat.2014.04.053
|
25 |
Wong M, Kao W, Lui J, et al. Cyclic deformation of ultrafine-grained aluminum[J]. Acta Mater., 2007, 55: 715
doi: 10.1016/j.actamat.2006.09.002
|
26 |
Zhang Z J, Zhang P, Zhang Z F. Cyclic softening behaviors of ultra-fine grained Cu-Zn alloys[J]. Acta Mater., 2016, 121: 331
doi: 10.1016/j.actamat.2016.09.020
|
27 |
An X H, Lin Q Y, Wu S D, et al. Improved fatigue strengths of nanocrystalline Cu and Cu Al alloys[J]. Mater. Res. Lett., 2015, 3: 135
doi: 10.1080/21663831.2015.1029645
|
28 |
Glushko O, Kiener D. Initiation of fatigue damage in ultrafine grained metal films[J]. Acta Mater., 2021, 206: 116599
doi: 10.1016/j.actamat.2020.116599
|
29 |
Mönig R. Thermal fatigue of Cu thin films[D]. Stuttgart: Universität Stuttgart, 2005
|
30 |
Schwaiger R, Kraft O. Size effects in the fatigue behavior of thin Ag films[J]. Acta Mater., 2003, 51: 195
doi: 10.1016/S1359-6454(02)00391-9
|
31 |
Stinville J C, Vanderesse N, Bridier F, et al. High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy[J]. Acta Mater., 2015, 98: 29
doi: 10.1016/j.actamat.2015.07.016
|
32 |
Stinville J C, Lenthe W C, Miao J, et al. A combined grain scale elastic-plastic criterion for identification of fatigue crack initiation sites in a twin containing polycrystalline nickel-base superalloy[J]. Acta Mater., 2016, 103: 461
doi: 10.1016/j.actamat.2015.09.050
|
33 |
Stinville J C, Lenthe W C, Echlin M P, et al. Microstructural statistics for fatigue crack initiation in polycrystalline nickel-base superalloys[J]. Int. J. Fract., 2017, 208: 221
doi: 10.1007/s10704-017-0241-z
|
34 |
Dai C Y, Zhang G P, Yan C. Size effects on tensile and fatigue behaviour of polycrystalline metal foils at the micrometer scale[J]. Philos. Mag., 2011, 91: 932
doi: 10.1080/14786435.2010.538017
|
35 |
Judelewicz M. Cyclic deformation of 100 μm thin polycrystalline copper foils[J]. Scr. Metall. Mater., 1993, 29: 1463
doi: 10.1016/0956-716X(93)90337-R
|
36 |
Judelewicz M, Künzi H U, Merk N, et al. Microstructural development during fatigue of copper foils 20-100 μm thick[J]. Mater. Sci. Eng., 1994, A186: 135
|
37 |
Hong S, Weil R. Low cycle fatigue of thin copper foils[J]. Thin Solid Films, 1996, 283: 175
doi: 10.1016/0040-6090(95)08225-5
|
38 |
Kammuri K, Kitamura M, Fujii T, et al. Effects of thickness and crystallographic orientation on fatigue life of single-crystalline copper foils[J]. Mater. Trans., 2015, 56: 200
doi: 10.2320/matertrans.M2014352
|
39 |
Lavenstein S, Gu Y J, Madisetti D, et al. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale[J]. Science, 2020, 370: eabb2690
doi: 10.1126/science.abb2690
|
40 |
Xu K N, Song Y C, Lu B, et al. Design of ultrathin current collectors via cyclically plastic yield for fabrication of high capacity lithium ion batteries[J]. J. Electrochem. Soc., 2020, 167: 110557
doi: 10.1149/1945-7111/aba702
|
41 |
Mughrabi H, Höppel H W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys[J]. Int. J. Fatigue, 2010, 32: 1413
doi: 10.1016/j.ijfatigue.2009.10.007
|
42 |
Saitova L R, Höppel H W, Göken M, et al. Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use[J]. Int. J. Fatigue, 2009, 31: 322
doi: 10.1016/j.ijfatigue.2008.08.007
|
43 |
Hall E O. Variation of hardness of metals with grain size[J]. Nature, 1954, 173: 948
|
44 |
Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. Int. J. Fatigue, 1994, 16: 163
doi: 10.1016/0142-1123(94)90001-9
|
45 |
Cortes C, Vapnik V. Support-vector networks[J]. Mach. Learn., 1995, 20: 273
|
46 |
Ding S F, An Y X, Zhang X K, et al. Wavelet twin support vector machines based on glowworm swarm optimization[J]. Neurocomputing, 2017, 225: 157
doi: 10.1016/j.neucom.2016.11.026
|
47 |
Zhou Z H. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 122
|
47 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 122
|
48 |
Calzada M E, Scariano S M. A synthetic control chart for the coefficient of variation[J]. J. Stat. Comput. Sim., 2013, 83: 853
doi: 10.1080/00949655.2011.639772
|
49 |
Krishnamoorthy K, Lee M. Improved tests for the equality of normal coefficients of variation[J]. Computation. Stat., 2014, 29: 215
|
50 |
Chen H L, Luo X M, Wang D, et al. Achieving very high cycle fatigue performance of Au thin films for flexible electronic applications[J]. J. Mater. Sci. Technol., 2021, 89: 107
doi: 10.1016/j.jmst.2021.02.025
|
51 |
Zhao P, Chen B, Kelleher J, et al. High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium[J]. Acta Mater., 2019, 174: 29
doi: 10.1016/j.actamat.2019.05.038
|
52 |
Beretta S, Murakami Y. Statistical analysis of defects for fatigue strength prediction and quality control of materials[J]. Fatigue Fract. Eng. Mater. Struct., 1998, 21: 1049
doi: 10.1046/j.1460-2695.1998.00104.x
|
53 |
El Haddad M H, Topper T H, Smith K N. Prediction of non propagating cracks[J]. Eng. Fract. Mech., 1979, 11: 573
doi: 10.1016/0013-7944(79)90081-X
|
54 |
Herold H, Streitenberger M, Zinke M, et al. An experimental and theoretical approach for an estimation of ΔKth [J]. Fatigue Fract. Eng. Mater. Struct., 2000, 23: 805
doi: 10.1046/j.1460-2695.2000.00314.x
|
55 |
Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Mater. Sci. Eng., 2013, A564: 331
|
56 |
Wang B B, Wu L H, Xue P, et al. Improved high cycle fatigue property of ultrafine grained pure aluminum[J]. Mater. Lett., 2020, 277: 128289
doi: 10.1016/j.matlet.2020.128289
|
57 |
Lee Y K, O'Keefe T J. Evaluating and monitoring nucleation and growth in copper foil[J]. JOM, 2002, 54(4): 37
|
58 |
Kondo K, Murakami H. Crystal growth of electrolytic Cu foil[J]. J. Electrochem. Soc., 2004, 151: C514
doi: 10.1149/1.1756883
|
59 |
Lin Y M, Yen S C. Effects of additives and chelating agents on electroless copper plating[J]. Appl. Surf. Sci., 2001, 178: 116
doi: 10.1016/S0169-4332(01)00306-3
|
60 |
Liao Z Y, Yang S T. Analysis and discussion on effect factors of aluminum foil rolling process[J]. Nonferrous Met. Process., 2014, 43(1): 21
|
60 |
廖志宇, 杨松涛. 铝箔轧制工艺影响因素的分析与探讨[J]. 有色金属加工, 2014, 43(1): 21
|
61 |
Niu M, Zhao G H. Effect of aluminium stock quality on aluminium foil rolling and aluminium foil quality[J]. Light Alloy Fabr. Technol., 2003, 31(12): 20
|
61 |
牛 猛, 赵光辉. 铝箔毛料质量对铝箔轧制生产的影响[J]. 轻合金加工技术, 2003, 31(12): 20
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|