|
|
磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响 |
倪明杰1,2, 刘仁慈1,2( ), 周浩浩3, 杨超4, 葛术宇3, 刘冬1,2, 史凤岭3, 崔玉友1,2, 杨锐1,2 |
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 3 中国航发沈阳黎明航空发动机有限责任公司 沈阳 110043 4 中国航发商用航空发动机有限责任公司 上海 200241 |
|
Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy |
NI Mingjie1,2, LIU Renci1,2( ), ZHOU Haohao3, YANG Chao4, GE Shuyu3, LIU Dong1,2, SHI Fengling3, CUI Yuyou1,2, YANG Rui1,2 |
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 AECC Shenyang Liming Aero-Engine Co. Ltd., Shenyang 110043, China 4 AECC Commercial Aero-Engine Co. Ltd., Shanghai 200241, China |
引用本文:
倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
Mingjie NI,
Renci LIU,
Haohao ZHOU,
Chao YANG,
Shuyu GE,
Dong LIU,
Fengling SHI,
Yuyou CUI,
Rui YANG.
Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy[J]. Acta Metall Sin, 2024, 60(2): 261-272.
1 |
Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. MRS Bull., 2003, 28: 622
doi: 10.1557/mrs2003.189
|
2 |
Kim Y W. Intermetallic alloys based on gamma titanium aluminide [J]. JOM, 1989, 41(7): 24
|
3 |
Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, A263: 281
|
4 |
Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
|
4 |
杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
|
5 |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
doi: 10.1080/09603409.2016.1183068
|
6 |
Appel F, Brossmann U, Christoph U, et al. Recent progress in the development of gamma titanium aluminide alloys [J]. Adv. Eng. Mater., 2000, 2: 699
doi: 10.1002/(ISSN)1527-2648
|
7 |
Gebauer K. Performance, tolerance and cost of TiAl passenger car valves [J]. Intermetallics, 2006, 14: 355
doi: 10.1016/j.intermet.2005.08.009
|
8 |
Oliver M. γ-titanium aluminide machining [C]. Tokyo: Tokyo institute of Technology, 2016
|
9 |
Ezugwu E O, Wang Z M. Titanium alloys and their machinability—A review [J]. J. Mater. Process. Technol., 1997, 68: 262
doi: 10.1016/S0924-0136(96)00030-1
|
10 |
Aust E, Niemann H R. Machining of γ-TiAl [J]. Adv. Eng. Mater., 1999, 1: 53
doi: 10.1002/(ISSN)1527-2648
|
11 |
Egry I, Brooks R, Holland-Moritz D, et al. Thermophysical properties of γ-titanium aluminide: The European impress project [J]. Int. J. Thermophys., 2007, 28: 1026
doi: 10.1007/s10765-007-0219-6
|
12 |
Wang H, Subhash G. Mechanics of mixed-mode ductile material removal with a conical tool and the size dependence of the specific energy [J]. J. Mech. Phys. Solids, 2002, 50: 1269
doi: 10.1016/S0022-5096(01)00126-0
|
13 |
Li B M, Zhao B, Li Q. Abrasives, Abrasives and Grinding Technology [M]. 2nd Ed., Beijing: Chemical Industry Press, 2016: 178
|
13 |
李伯民, 赵 波, 李 清. 磨料、磨具与磨削技术 [M]. 第2版, 北京: 化学工业出版社, 2016: 178
|
14 |
M'saoubi R, Outeiro J C, Changeux B, et al. Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels [J]. J. Mater. Process. Technol., 1999, 96: 225
doi: 10.1016/S0924-0136(99)00359-3
|
15 |
Gao Y K. Surface Integrity Theory and Application [M]. Beijing: Chemical Industry Press, 2014: 10
|
15 |
高玉魁. 表面完整性理论与应用 [M]. 北京: 化学工业出版社, 2014: 10
|
16 |
Griffiths B. Manufacturing Surface Technology: Surface Integrity and Functional Performance [M]. London: CRC Press, 2001: 21
|
17 |
Mantle A L, Aspinwall D K. Surface integrity of a high speed milled gamma titanium aluminide [J]. J. Mater. Process. Technol., 2001, 118: 143
doi: 10.1016/S0924-0136(01)00914-1
|
18 |
Kolahdouz S, Hadi M, Arezoo B, et al. Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions [J]. Proc. CIRP, 2015, 26: 367
doi: 10.1016/j.procir.2014.08.016
|
19 |
Zhou L, Cui C, Jia Q, et al. Experimental and finite element simulation of milling process for γ-TiAl intermetallics [J]. Acta Metall. Sin., 2017, 53: 505
|
19 |
周 丽, 崔 超, 贾 清 等. γ-TiAl金属间化合物铣削加工实验与有限元模拟 [J]. 金属学报, 2017, 53: 505
|
20 |
Castellanos S D, Cavaleiro A J, de Jesus A M P, et al. Machinability of titanium aluminides: A review [J]. Proc. Inst. Mech. Eng., 2019, 233L: 426
|
21 |
Wang Y D, Xu Z Y, Hu J C, et al. Surface integrity analysis of electrochemical machining of γ-TiAl alloys [J]. Mater. Today Commun., 2020, 25: 101686
|
22 |
Xi X X, Ding W F, Wu Z X, et al. Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels [J]. Chin. J. Aeronaut., 2021, 34: 100
doi: 10.1016/j.cja.2020.04.031
|
23 |
Lin B C, Liu R C, Jia Q, et al. Effect of surface topography on room temperature tensile ductility of TiAl [J]. JOM, 2017, 69: 2583
doi: 10.1007/s11837-017-2547-8
|
24 |
Sharman A R C, Aspinwall D K, Dewes R C, et al. The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide [J]. Int. J. Mach. Tools Manuf., 2001, 41: 1681
doi: 10.1016/S0890-6955(01)00034-7
|
25 |
Sun C, Huang Z W. Effects of varied surface conditions on the fatigue behavior of a high-strength gamma-based titanium aluminide alloy [J]. Rare Met. Mater. Eng., 2014, 43: 589
|
25 |
孙 才, 黄泽文. 不同表面加工状态对高强度γ-TiAl合金疲劳性能的影响 [J]. 稀有金属材料与工程, 2014, 43: 589
|
26 |
Luo Q H, Li C Z, Lou Y Z, et al. Grinding process effect on surface modificative layer microstructure, property and fatigue behavior of carburized M50NiL steel [J]. Acta Metall. Sin., 2012, 48: 194
doi: 10.3724/SP.J.1037.2011.00560
|
26 |
罗庆洪, 李春志, 娄艳芝 等. 磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响 [J]. 金属学报, 2012, 48: 194
doi: 10.3724/SP.J.1037.2011.00560
|
27 |
Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
|
27 |
刘仁慈, 王 震, 刘 冬 等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
|
28 |
Liu R C, Liu D, Tan J, et al. Textures of rectangular extrusions and their effects on the mechanical properties of thermo-mechanically treated, lamellar microstructure, Ti-47Al-2Cr-2Nb-0.15B [J]. Intermetallics, 2014, 52: 110
doi: 10.1016/j.intermet.2014.03.016
|
29 |
Arola D, Williams C L. Estimating the fatigue stress concentration factor of machined surfaces [J]. Int. J. Fatigue, 2002, 24: 923
doi: 10.1016/S0142-1123(02)00012-9
|
30 |
Neuber H. Theory of Notch Stresses: Principles for Exact Stress Calculation [M]. Michigan: J.W. Edwards, 1946: 141
|
31 |
Gao Y K. Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy [J]. Acta Metall. Sin., 2016, 52: 915
|
31 |
高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响 [J]. 金属学报, 2016, 52: 915
doi: 10.11900/0412.1961.2015.00628
|
32 |
Mitao S, Tsuyama S, Minakawa K. Effects of microstructure on the mechanical properties and fracture of γ-base titanium aluminides [J]. Mater. Sci. Eng., 1991, A143: 51
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|