Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 261-272    DOI: 10.11900/0412.1961.2022.00080
  研究论文 本期目录 | 过刊浏览 |
磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响
倪明杰1,2, 刘仁慈1,2(), 周浩浩3, 杨超4, 葛术宇3, 刘冬1,2, 史凤岭3, 崔玉友1,2, 杨锐1,2
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 中国航发沈阳黎明航空发动机有限责任公司 沈阳 110043
4 中国航发商用航空发动机有限责任公司 上海 200241
Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy
NI Mingjie1,2, LIU Renci1,2(), ZHOU Haohao3, YANG Chao4, GE Shuyu3, LIU Dong1,2, SHI Fengling3, CUI Yuyou1,2, YANG Rui1,2
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 AECC Shenyang Liming Aero-Engine Co. Ltd., Shenyang 110043, China
4 AECC Commercial Aero-Engine Co. Ltd., Shanghai 200241, China
引用本文:

倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
Mingjie NI, Renci LIU, Haohao ZHOU, Chao YANG, Shuyu GE, Dong LIU, Fengling SHI, Yuyou CUI, Rui YANG. Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy[J]. Acta Metall Sin, 2024, 60(2): 261-272.

全文: PDF(5023 KB)   HTML
摘要: 

γ-TiAl合金部件需要磨削加工以保证其装配精度,而低塑性金属间化合物γ-TiAl合金的力学性能对磨削表面完整性极为敏感。本工作研究了磨削深度对γ-TiAl合金样品表面形貌、表层显微组织、显微硬度等表面完整性参数及最终疲劳性能的影响。结果表明,0.5 mm及以上深度磨削样品表面易产生裂纹,而0.2 mm及以下深度磨削样品表面完好,这与磨削变形热温升导致的冷却收缩拉应力过大有关。随着磨削深度增大,粗糙度参数的轮廓算术平均偏差(Ra)和微观不平度的十点平均高度(Rz)增大,偏度(Rsk)减小。表层γ + α2片层沿磨削方向弯曲变形,相应变形层厚度随着磨削量增大而增大,而显微硬度由表及里先减小后增大。γ-TiAl合金650℃加载440 MPa旋转弯曲疲劳寿命随着磨削深度增大而减小,磨削深度0.05 mm的样品疲劳寿命大于106 cyc,磨削深度0.2 mm的样品疲劳寿命约为104 cyc,其断口裂纹源可观察到磨削痕迹,这与其表面沟槽应力集中有关。γ-TiAl合金疲劳寿命随着Rz的增大而减小,2者呈非线性关系;当Rz小于4 μm时,疲劳寿命稳定在106 cyc以上。

关键词 γ-TiAl磨削表面完整性粗糙度显微组织疲劳性能    
Abstract

γ-TiAl is a family of promising structural materials with low density, high stiffness, and good oxidation and creep resistances at elevated temperatures. They can replace heavier nickel-based alloys at 600-800oC; thus, they are used in the construction of low-pressure turbine blades for aeroengines, i.e., General Electric next-generation and leading edge aviation propulsion. Grinding is an important processing step in blade production to ensure the accuracy of assembling. However, the limited ductility and fracture toughness at room temperature and low thermal conductivity of γ-TiAl alloys narrow the parameter windows of the grinding process. Cracks often form on the surface when the processing parameters are not well controlled. Additionally, grinding greatly influences the surface integrity (i.e., roughness, microstructure, and hardness), which influences the mechanical properties, especially those of brittle γ-TiAl alloys that are sensitive to notch. Grinding depth is a major parameter in blade production because it influences quality and efficiency. Investigating the effect of grinding depth on the surface integrity and fatigue properties of γ-TiAl samples is necessary to optimize the grinding process and identify the major factors of surface integrity that guarantee optimal mechanical properties. In this work, cast γ-TiAl alloy (Ti-45Al-2Nb-2Mn-1B, atomic fraction, %) samples were ground with different depths. The surface integrity (surface roughness, microstructure, and microhardness) and fatigue properties of the samples were compared. Cracks were detected in samples ground to 0.5 and 1 mm depths, while no cracks were detected in samples ground to 0.2 mm or less depths, this is related to the tensile stress induced by temperature increase caused by deformation heat. With the increased grinding depth, the number and depth of grooves increased and for the surface roughness parameters, arithmetic mean deviation and 10-point mean roughness (Rz) increased, while skewness decreased. The γ + α2 lamellae bended in the surface layer and layer thickness increased with the increased grinding depth. The microhardness initially decreased and then increased from the surface to the interior. The rotating bending fatigue life at 650oC under a load of 440 MPa decreased with the increased grinding depth: it was > 106 cyc at 0.05 mm grinding depth but dropped to ~104 cyc at 0.2 mm grinding depth. Fracture surface analysis showed that the cracks mainly nucleated at the surface grooves caused by grinding, which resulted in stress concentration and reduced the fatigue life of samples ground to 0.2 mm depth. The fatigue life decreased with increasing Rz, but remained above 106 cyc when Rz was less than 4 μm. A nonlinear relationship between fatigue life and Rz was shown.

Key wordsγ-TiAl    grinding    surface integrity    roughness    microstructure    fatigue property
收稿日期: 2022-02-28     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51701209);中国科学院稳定支持基础研究领域青年团队计划项目(YSBR-025);云南省重大科技专项计划项目(202302AB080009)
通讯作者: 刘仁慈,rcliu@imr.ac.cn,主要从事TiAl合金及其部件研制的研究
Corresponding author: LIU Renci, professor, Tel: (024)83970951, E-mail: rcliu@imr.ac.cn
作者简介: 倪明杰,男,1996年生,硕士
图1  γ-TiAl试片与旋转弯曲疲劳样品磨削加工示意图
图2  不同深度磨削γ-TiAl试片表面荧光渗透检测结果
图3  不同深度磨削γ-TiAl试片的表面形貌
Grinding depth / mmRa / μmRz / μmRskRku
0.050.664.300.2812.97
0.10.844.430.1762.98
0.20.934.87-0.1372.37
0.51.014.98-0.0791.84
11.215.010.0112.33
表1  不同深度磨削γ-TiAl试片垂直磨削方向表面粗糙度
图4  不同深度磨削γ-TiAl试片表面三维轮廓和垂直磨削方向二维线性轮廓曲线
图5  不同深度磨削旋转弯曲疲劳γ-TiAl样品圆弧工作段表面三维轮廓
Grinding depth / mmNo.Ra / μmRz / μmRskRkuNf / cyc
0.0510.5252.819-0.1342.521978066
20.6694.222-0.5743.73188264
30.5903.364-0.4722.832963463
40.4912.8850.3902.852950000
50.4692.956-0.8824.207530000
0.110.5633.233-0.5863.191860544
20.7474.232-0.4522.922900787
30.6313.582-0.0832.799709
40.7734.2860.2322.6416000
50.4522.717-0.4523.291960000
0.211.3518.325-0.4853.6235200
22.83113.573-0.2362.5512200
31.6959.565-1.0104.2915500
41.3897.466-0.4062.6413284
51.6499.941-0.9213.775149
表2  不同深度磨削旋转弯曲疲劳γ-TiAl样品圆弧工作段轴向表面粗糙度及其650℃加载440 MPa疲劳寿命
图6  不同深度磨削γ-TiAl样品L截面和T截面表层显微组织的OM像
图7  磨削深度为1 mm的γ-TiAl试片L截面表层EBSD分析
图8  不同深度磨削γ-TiAl试片L截面表层显微硬度随深度的变化
图9  不同深度磨削旋转弯曲疲劳γ-TiAl样品断口的二次电子形貌
图10  γ-TiAl合金磨削表层温度变化与应力示意图
图11  十点平均高度(Rz)与650℃加载440 MPa疲劳寿命的关系
1 Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. MRS Bull., 2003, 28: 622
doi: 10.1557/mrs2003.189
2 Kim Y W. Intermetallic alloys based on gamma titanium aluminide [J]. JOM, 1989, 41(7): 24
3 Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, A263: 281
4 Yang R. Advances and challenges of TiAl base alloys [J]. Acta Metall. Sin., 2015, 51: 129
doi: 10.11900/0412.1961.2014.00396
4 杨 锐. 钛铝金属间化合物的进展与挑战 [J]. 金属学报, 2015, 51: 129
5 Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temp., 2016, 33: 549
doi: 10.1080/09603409.2016.1183068
6 Appel F, Brossmann U, Christoph U, et al. Recent progress in the development of gamma titanium aluminide alloys [J]. Adv. Eng. Mater., 2000, 2: 699
doi: 10.1002/(ISSN)1527-2648
7 Gebauer K. Performance, tolerance and cost of TiAl passenger car valves [J]. Intermetallics, 2006, 14: 355
doi: 10.1016/j.intermet.2005.08.009
8 Oliver M. γ-titanium aluminide machining [C]. Tokyo: Tokyo institute of Technology, 2016
9 Ezugwu E O, Wang Z M. Titanium alloys and their machinability—A review [J]. J. Mater. Process. Technol., 1997, 68: 262
doi: 10.1016/S0924-0136(96)00030-1
10 Aust E, Niemann H R. Machining of γ-TiAl [J]. Adv. Eng. Mater., 1999, 1: 53
doi: 10.1002/(ISSN)1527-2648
11 Egry I, Brooks R, Holland-Moritz D, et al. Thermophysical properties of γ-titanium aluminide: The European impress project [J]. Int. J. Thermophys., 2007, 28: 1026
doi: 10.1007/s10765-007-0219-6
12 Wang H, Subhash G. Mechanics of mixed-mode ductile material removal with a conical tool and the size dependence of the specific energy [J]. J. Mech. Phys. Solids, 2002, 50: 1269
doi: 10.1016/S0022-5096(01)00126-0
13 Li B M, Zhao B, Li Q. Abrasives, Abrasives and Grinding Technology [M]. 2nd Ed., Beijing: Chemical Industry Press, 2016: 178
13 李伯民, 赵 波, 李 清. 磨料、磨具与磨削技术 [M]. 第2版, 北京: 化学工业出版社, 2016: 178
14 M'saoubi R, Outeiro J C, Changeux B, et al. Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels [J]. J. Mater. Process. Technol., 1999, 96: 225
doi: 10.1016/S0924-0136(99)00359-3
15 Gao Y K. Surface Integrity Theory and Application [M]. Beijing: Chemical Industry Press, 2014: 10
15 高玉魁. 表面完整性理论与应用 [M]. 北京: 化学工业出版社, 2014: 10
16 Griffiths B. Manufacturing Surface Technology: Surface Integrity and Functional Performance [M]. London: CRC Press, 2001: 21
17 Mantle A L, Aspinwall D K. Surface integrity of a high speed milled gamma titanium aluminide [J]. J. Mater. Process. Technol., 2001, 118: 143
doi: 10.1016/S0924-0136(01)00914-1
18 Kolahdouz S, Hadi M, Arezoo B, et al. Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions [J]. Proc. CIRP, 2015, 26: 367
doi: 10.1016/j.procir.2014.08.016
19 Zhou L, Cui C, Jia Q, et al. Experimental and finite element simulation of milling process for γ-TiAl intermetallics [J]. Acta Metall. Sin., 2017, 53: 505
19 周 丽, 崔 超, 贾 清 等. γ-TiAl金属间化合物铣削加工实验与有限元模拟 [J]. 金属学报, 2017, 53: 505
20 Castellanos S D, Cavaleiro A J, de Jesus A M P, et al. Machinability of titanium aluminides: A review [J]. Proc. Inst. Mech. Eng., 2019, 233L: 426
21 Wang Y D, Xu Z Y, Hu J C, et al. Surface integrity analysis of electrochemical machining of γ-TiAl alloys [J]. Mater. Today Commun., 2020, 25: 101686
22 Xi X X, Ding W F, Wu Z X, et al. Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels [J]. Chin. J. Aeronaut., 2021, 34: 100
doi: 10.1016/j.cja.2020.04.031
23 Lin B C, Liu R C, Jia Q, et al. Effect of surface topography on room temperature tensile ductility of TiAl [J]. JOM, 2017, 69: 2583
doi: 10.1007/s11837-017-2547-8
24 Sharman A R C, Aspinwall D K, Dewes R C, et al. The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide [J]. Int. J. Mach. Tools Manuf., 2001, 41: 1681
doi: 10.1016/S0890-6955(01)00034-7
25 Sun C, Huang Z W. Effects of varied surface conditions on the fatigue behavior of a high-strength gamma-based titanium aluminide alloy [J]. Rare Met. Mater. Eng., 2014, 43: 589
25 孙 才, 黄泽文. 不同表面加工状态对高强度γ-TiAl合金疲劳性能的影响 [J]. 稀有金属材料与工程, 2014, 43: 589
26 Luo Q H, Li C Z, Lou Y Z, et al. Grinding process effect on surface modificative layer microstructure, property and fatigue behavior of carburized M50NiL steel [J]. Acta Metall. Sin., 2012, 48: 194
doi: 10.3724/SP.J.1037.2011.00560
26 罗庆洪, 李春志, 娄艳芝 等. 磨削工艺对渗碳M50NiL钢表面变质层微观结构和性能及疲劳性能影响 [J]. 金属学报, 2012, 48: 194
doi: 10.3724/SP.J.1037.2011.00560
27 Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
27 刘仁慈, 王 震, 刘 冬 等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
28 Liu R C, Liu D, Tan J, et al. Textures of rectangular extrusions and their effects on the mechanical properties of thermo-mechanically treated, lamellar microstructure, Ti-47Al-2Cr-2Nb-0.15B [J]. Intermetallics, 2014, 52: 110
doi: 10.1016/j.intermet.2014.03.016
29 Arola D, Williams C L. Estimating the fatigue stress concentration factor of machined surfaces [J]. Int. J. Fatigue, 2002, 24: 923
doi: 10.1016/S0142-1123(02)00012-9
30 Neuber H. Theory of Notch Stresses: Principles for Exact Stress Calculation [M]. Michigan: J.W. Edwards, 1946: 141
31 Gao Y K. Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy [J]. Acta Metall. Sin., 2016, 52: 915
31 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响 [J]. 金属学报, 2016, 52: 915
doi: 10.11900/0412.1961.2015.00628
32 Mitao S, Tsuyama S, Minakawa K. Effects of microstructure on the mechanical properties and fracture of γ-base titanium aluminides [J]. Mater. Sci. Eng., 1991, A143: 51
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[15] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.