Please wait a minute...
金属学报  2023, Vol. 59 Issue (7): 915-925    DOI: 10.11900/0412.1961.2021.00420
  研究论文 本期目录 | 过刊浏览 |
Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为
孙蓉蓉1, 姚美意1(), 王皓瑜1, 张文怀1, 胡丽娟1, 仇云龙2, 林晓冬1, 谢耀平1, 杨健3, 董建新4, 成国光5
1上海大学 材料研究所 上海 200072
2中兴能源装备有限公司 海门 226126
3上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
4北京科技大学 材料科学与工程学院 北京 100083
5北京科技大学 钢铁冶金新技术国家重点实验室 北京 100083
High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition
SUN Rongrong1, YAO Meiyi1(), WANG Haoyu1, ZHANG Wenhuai1, HU Lijuan1, QIU Yunlong2, LIN Xiaodong1, XIE Yaoping1, YANG Jian3, DONG Jianxin4, CHENG Guoguang5
1Institute of Materials, Shanghai University, Shanghai 200072, China
2Zhongxing Energy Equipment Co., Ltd., Haimen 226126, China
3State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
4School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
5State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
Rongrong SUN, Meiyi YAO, Haoyu WANG, Wenhuai ZHANG, Lijuan HU, Yunlong QIU, Xiaodong LIN, Yaoping XIE, Jian YANG, Jianxin DONG, Guoguang CHENG. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. Acta Metall Sin, 2023, 59(7): 915-925.

全文: PDF(3324 KB)   HTML
摘要: 

利用带蒸汽发生器的同步热分析仪对Fe22Cr5Al3Mo-xY (x = 0、0.15,质量分数,%)合金分别进行1000和1200℃下恒温2 h的高温蒸汽氧化实验。采用XRD、FIB、EDS和TEM观察分析氧化前后样品的显微组织、晶体结构和成分。结果表明,添加0.15%Y使FeCrAl合金在1000℃下的氧化增重速率增大,但可降低FeCrAl合金在1200℃下的氧化增重速率,同时还可以抑制氧化膜表面脊状形貌的形成,并提高了合金氧化膜的厚度均匀性以及界面平整度;2种合金在1000和1200℃的高温蒸汽下恒温2 h后形成的氧化物膜均为α-Al2O3,在Al2O3膜中平行于氧化膜/基体(O/M)界面的Fe、Cr富集区为hcp-(Cr, Fe)2O3;Fe22Cr5Al3Mo-0.15Y合金在1200℃下恒温2 h后氧化膜中朝向基体一侧生长的富Y氧化物中存在AlYO3、Y2O3和Fe(Cr, Al)2O4尖晶石氧化物。从Y影响氧化膜显微组织演化的角度探讨了Y对不同温度下FeCrAl合金氧化行为的影响机制。

关键词 FeCrAl合金Y高温蒸汽失水事故显微组织    
Abstract

An increased temperature causes the breakaway oxidation of zirconium alloys and the loss of structural integrity under the loss of coolant accident (LOCA). Thus, to enhance the inherent safety of nuclear reactors, the idea of developing accident-tolerant fuel (ATF) is proposed. One of the promising candidate materials for ATF cladding is FeCrAl alloy. The theoretical basis and guidance for FeCrAl alloy's composition optimization can be obtained by investigating the effects of alloying elements on the oxidation behavior and mechanism. Thus, the effect of Y on the oxidation behavior of Fe22Cr5Al3Mo alloy in 1000 and 1200oC high-temperature steam was investigated in this study. Two types of Fe22Cr5Al3Mo-xY (x = 0, 0.15, mass fraction, %) alloys, denoted as 0Y and 0.15Y, respectively, were fabricated and oxidized in 1000 and 1200oC high-temperature steam for 2 h, employing a simultaneous thermal analyzer. The microstructure, crystal structure, and composition of the samples before and after oxidation were analyzed using XRD, FIB, EDS, and TEM. The findings indicate that adding 0.15%Y increases the weight gain rate of FeCrAl alloy in 1000oC high-temperature steam, but decreases the weight gain rate of FeCrAl alloy in 1200oC high-temperature steam. Furthermore, adding 0.15%Y can inhibite the formation of ridge morphology on the surface of oxide film and improve the thickness uniformity and interface flatness of oxide film. The oxide films formed on the 0Y and 0.15Y alloys are both α-Al2O3 under the condition of 1000 and 1200oC high-temperature steam for 2 h. In the Al2O3 oxide film, there is hcp-(Cr, Fe)2O3 paralleled to the oxide/metal (O/M) interface. AlYO3, Y2O3, and Fe(Cr, Al)2O4 are present in the Y-rich oxides growing toward the matrix in 0.15Y alloy oxidized in 1200oC steam. The effect of Y on the oxidation behavior of FeCrAl alloy at various temperatures was discussed from the viewpoint of the influence of Y on the microstructure evolution of oxide film.

Key wordsFeCrAl alloy    Y    high-temperature steam    loss of coolant accident (LOCA)    microstructure
收稿日期: 2021-10-08     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51871141)
通讯作者: 姚美意,yaomeiyi@shu.edu.cn,主要从事核燃料包壳材料锆合金和容错燃料(ATF)包壳材料的研究
Corresponding author: YAO Meiyi, professor, Tel: 17721378029, E-mail: yaomeiyi@shu.edu.cn
作者简介: 孙蓉蓉,女,1993年生,博士
AlloyCrAlMoYCNFe
0Y22.905.253.64-0.00580.0089Bal.
0.15Y21.854.723.520.140.00660.0099Bal.
表1  FeCrAl合金的化学成分 (mass fraction / %)
图1  0Y和0.15Y合金的XRD谱
图2  0Y和0.15Y合金在1000和1200℃的高温蒸汽条件下恒温2 h的氧化动力学曲线
Alloy1000oC1200oC
0Y0.051.54
0.15Y0.260.59
表2  0Y和0.15Y合金在1000和1200℃高温蒸汽条件下恒温2 h的抛物线速率常数 (mg2·dm-4·s-1)
图3  0Y和0.15Y合金在1000和1200℃的高温蒸汽条件下恒温2 h的氧化膜外表面显微组织的SEM像
图4  0Y和0.15Y合金在1000和1200℃高温蒸汽条件下恒温2 h的氧化膜截面显微组织的高角环形暗场(HAADF)像(图3中虚线位置)
图5  0Y和0.15Y合金在1000和1200℃高温蒸汽条件下恒温2 h的氧化膜截面的HAADF像和EDS面扫描图
图6  图5a中Line 1 EDS线扫描图
图7  0.15Y合金在1000和1200℃的高温蒸汽条件下恒温2 h的氧化膜截面不同区域的TEM像及选区电子衍射(SAED)和快速Fourier变换(FFT)花样
图8  FeCrAl合金在高温蒸汽中的氧化过程示意图
1 Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
2 Duan Z G, Yang H L, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water reactors [J]. Nucl. Eng. Des., 2017, 316: 131
doi: 10.1016/j.nucengdes.2017.02.031
3 Field K G, Yamamoto Y, Pint B A, et al. Accident tolerant FeCrAl fuel cladding: Current status towards commercialization [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. Cham: Springer, 2017
4 Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
5 Field K G, Gussev M N, Yamamoto Y, et al. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications [J]. J. Nucl. Mater., 2014, 454: 352
doi: 10.1016/j.jnucmat.2014.08.013
6 Dryepondt S, Put A R V, Pint B A. Effect of H2O and CO2 on the oxidation behavior and durability at high temperature of ODS-FeCrAl [J]. Oxid. Met., 2013, 79: 627
doi: 10.1007/s11085-013-9382-2
7 Terrani K A, Zinkle S J, Snead L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding [J]. J. Nucl. Mater., 2014, 448: 420
doi: 10.1016/j.jnucmat.2013.06.041
8 Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
9 Rebak R B, Gupta V K, Larsen M. Oxidation characteristics of two FeCrAl alloys in air and steam from 800oC to 1300oC [J]. JOM, 2018, 70: 1484
doi: 10.1007/s11837-018-2979-9
10 Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
10 褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
11 Badini C, Laurella F. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism [J]. Surf. Coat. Technol., 2001, 135: 291
doi: 10.1016/S0257-8972(00)00989-0
12 Gupta V K, Larsen M, Rebak R B. Utilizing FeCrAl oxidation resistance properties in water, air and steam for accident tolerant fuel cladding [J]. ECS Trans., 2018, 85: 3
13 Liu F, Götlind H, Svensson J E, et al. TEM investigation of the microstructure of the scale formed on a FeCrAlRE alloy at 900oC: The effect of Y-rich RE particles [J]. Oxid. Met., 2010, 74: 11
doi: 10.1007/s11085-010-9195-5
14 Falaakh D F, Kim S, Bahn C B. Microstructure of aluminium oxide formed on ferritic FeCrAl alloy after high-temperature steam oxidation [J]. Mater. High Temp., 2020, 37: 207
doi: 10.1080/09603409.2020.1742526
15 Pan D, Zhang R Q, Wang H J, et al. In steam short-time oxidation kinetics of FeCrAl alloys [J]. J. Mater. Eng. Perform., 2018, 27: 6407
doi: 10.1007/s11665-018-3665-3
16 Mennicke C, Schumann E, Ruhle M, et al. The effect of yttrium on the growth process and microstructure of α-Al2O3 on FeCrAl [J]. Oxid. Met., 1998, 49: 455
doi: 10.1023/A:1018803113093
17 Cueff R, Buscail H, Caudron E, et al. Oxidation behaviour of Kanthal A1 and Kanthal AF at 1173 K: Effect of yttrium alloying addition [J]. Appl. Surf. Sci., 2003, 207: 246
doi: 10.1016/S0169-4332(02)01506-4
18 Cueff R, Buscail H, Caudron E, et al. Oxidation of alumina formers at 1173 K: Effect of yttrium ion implantation and yttrium alloying addition [J]. Corros. Sci., 2003, 45: 1815
doi: 10.1016/S0010-938X(02)00254-8
19 Issartel C, Buscail H, Chevalier S, et al. Effect of yttrium as alloying element on a model alumina-forming alloy oxidation at 1100oC [J]. Oxid. Met., 2017, 88: 409
doi: 10.1007/s11085-017-9750-4
20 Qian Y, Sun R R, Zhang W H, et al. Effect of Nb on microstructure and corrosion resistance of Fe22Cr5Al3Mo alloy [J]. Acta Metall. Sin., 2020, 56: 321
doi: 10.11900/0412.1961.2019.00276
20 钱 月, 孙蓉蓉, 张文怀 等. Nb对Fe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响 [J]. 金属学报, 2020, 56: 321
21 Zhang W H, Qian Y, Sun R R, et al. Oxidation characteristics of Fe22Cr5Al3Mo-xNb alloys in high temperature steam [J]. Corros. Sci., 2021, 191: 109722
doi: 10.1016/j.corsci.2021.109722
22 Liu F, Götlind H, Svensson J E, et al. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900oC: A detailed microstructural investigation [J]. Corros. Sci., 2008, 50: 2272
doi: 10.1016/j.corsci.2008.05.019
23 Engkvist J, Canovic S, Liu F, et al. Oxidation of FeCrAl foils at 500-900oC in dry O2 and O2 with 40%H2O [J]. Mater. High Temp., 2014, 26: 199
doi: 10.3184/096034009X464311
24 Engkvist J, Canovic S, Hellström K, et al. Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900-1100oC in dry O2 and in O2 + H2O [J]. Oxid. Met., 2010, 73: 233
doi: 10.1007/s11085-009-9177-7
25 Qiao Y J, Wang P, Qi W, et al. Mechanism of Al on FeCrAl steam oxidation behavior and molecular dynamics simulations [J]. J. Alloys Compd., 2020, 828: 154310
doi: 10.1016/j.jallcom.2020.154310
26 Dai J X, Gong Z M, Xu S T, et al. In situ study on the initial oxidation behavior of zirconium alloys with near-ambient pressure XPS [J]. Acta Phys. Chim. Sin., 2022, 38: 2003026
26 戴久翔, 龚忠苗, 徐诗彤 等. 锆合金初始氧化行为的原位近常压XPS研究 [J]. 物理化学学报, 2022, 38: 2003026
27 Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
28 Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr in Fe-Cr-Al alloys [J]. J. Iron Steel Res., 2007, 19(7): 46
28 张志刚, 牛 焱, 张学军. 铁-铬-铝合金中铬的第三组元作用 [J]. 钢铁研究学报, 2007, 19(7): 46
29 Holcomb G R. Superalloys for ultra supercritical steam turbines-oxidation behavior [A]. Superalloys 2008 [C]. Champion, PA: TMS, 2008: 601
30 Tedmon C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys [J]. J. Electrochem. Soc., 1966, 113: 766
doi: 10.1149/1.2424115
31 Messaoudi K, Huntz A M, Lesage B. Diffusion and growth mechanism of Al2O3 scales on ferritic Fe-Cr-Al alloys [J]. Mater. Sci. Eng., 1998, A247: 248
32 Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
33 Nicholls J R, Bennett M J, Newton R. A life prediction model for the chemical failure of FeCrAlRE alloys: Preliminary assessment of model extension to lower temperatures [J]. Mater. High Temp., 2003, 20: 429
doi: 10.1179/mht.2003.050
34 Shi J G, Su H X, Zhang X J, et al. Research progress in the influence of rare earth elements on properties of alumina [J]. Sino-Glob. Energy, 2020, 25(5): 68
34 史建公, 苏海霞, 张新军 等. 稀土元素对氧化铝性能影响的研究进展 [J]. 中外能源, 2020, 25(5): 68
35 Pint B A, Jain A, Hobbs L W. The effect of ion-implanted elements on the θ to α phase transformation of Al2O3 scales grown on β-NiAl [J]. MRS Online Proc. Library, 1992, 288: 1013
doi: 10.1557/PROC-288-1013
36 Pint B A, Martin J R, Hobbs L W. 18O/SIMS characterization of the growth mechanism of doped and undoped α-Al2O3 [J]. Oxid. Met., 1993, 39: 167
doi: 10.1007/BF00665610
37 Naumenko D, Kochubey V, Niewolak L, et al. Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements [J]. J. Mater. Sci., 2008, 43: 4550
doi: 10.1007/s10853-008-2639-5
38 Lagerlof K P D, Pletka B J, Mitchell T E, et al. Deformation and diffusion in sapphire (α-Al2O3) [J]. Radiation Effects, 1983, 74: 87
doi: 10.1080/00337578308218402
39 Jedlinski J, Borchardt G. On the oxidation mechanism of alumina formers [J]. Oxid. Met., 1991, 36: 317
doi: 10.1007/BF00662968
40 Tolpygo V K, Grabke H J. Microstructural characterization and adherence of α-Al2O3 oxide scales on Fe-Cr-Al and Fe-Cr-Al-Y alloys [J]. Oxid. Met., 1994, 41: 343
doi: 10.1007/BF01113370
41 Li B, Yan Y X, Meng G E, et al. Effect of yttrium on microstructure and high temperature embrittlement of Fe-20Cr-4Al alloy [J]. J. Chin. Soc. Rare Earths, 1992, 10: 52
41 李 碚, 颜玉新, 孟广恩 等. 含钇相对Fe-20Cr-4Al合金的组织和高温脆化的影响 [J]. 中国稀土学报, 1992, 10: 52
42 Saenko I, Fabrichnaya O, Udovsky A. New thermodynamic assessment of the Fe-Y system [J]. J. Phase Equilib. Diffus., 2017, 38: 684
doi: 10.1007/s11669-017-0574-3
43 Wu S J, Li J, Liu S. Effect of Hf on microstructure and property of ODS-FeCrAl alloy [J]. Atom. Energy Sci. Technol., 2020, 54: 648
43 吴飒建, 李 静, 刘 实. Hf对ODS-FeCrAl合金微观组织及性能的影响 [J]. 原子能科学技术, 2020, 54: 648
doi: 10.7538/yzk.2019.youxian.0632
44 Dou P, Kimura A, Okuda T, et al. Polymorphic and coherency transition of Y-Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel [J]. Acta Mater., 2011, 59: 992
doi: 10.1016/j.actamat.2010.10.026
45 Li X D, Li J G, Xiu Z M, et al. Transparent Nd: YAG ceramics fabricated using nanosized γ-alumina and yttria powders [J]. J. Am. Ceram. Soc., 2009, 92: 241
doi: 10.1111/jace.2009.92.issue-1
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[4] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.