Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1611-1622    DOI: 10.11900/0412.1961.2021.00574
  研究论文 本期目录 | 过刊浏览 |
Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为
林晓冬1, 马海滨2(), 任啟森2, 孙蓉蓉1, 张文怀1, 胡丽娟1, 梁雪3, 李毅丰1, 姚美意1()
1.上海大学 材料研究所 上海 200072
2.中广核研究院有限公司 核燃料与材料研究所 深圳 518026
3.上海大学 微结构重点实验室 上海 200444
Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments
LIN Xiaodong1, MA Haibin2(), REN Qisen2, SUN Rongrong1, ZHANG Wenhuai1, HU Lijuan1, LIANG Xue3, LI Yifeng1, YAO Meiyi1()
1.Institute of Materials, Shanghai University, Shanghai 200072, China
2.Nuclear Fuel and Materials Department, China Nuclear Power Technology Research Institute, Shenzhen 518026, China
3.Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
引用本文:

林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
Xiaodong LIN, Haibin MA, Qisen REN, Rongrong SUN, Wenhuai ZHANG, Lijuan HU, Xue LIANG, Yifeng LI, Meiyi YAO. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. Acta Metall Sin, 2022, 58(12): 1611-1622.

全文: PDF(4211 KB)   HTML
摘要: 

利用XRD、SEM和TEM等测试技术研究了Fe13Cr5Al4Mo合金在360℃、18.6 MPa去离子水和360℃、18.6 MPa、3.5 mg/L Li + 1000 mg/L B水溶液中的腐蚀行为。结果表明,Fe13Cr5Al4Mo合金的腐蚀增重远低于参比锆合金,且腐蚀增重速率较慢,表明Fe13Cr5Al4Mo合金的耐腐蚀性能优于参比锆合金。在2种水环境下,Fe13Cr5Al4Mo合金表面均形成了一层Fe(Cr, Al)2O4纳米尖晶石结构的氧化膜,在去离子水中还产生了Fe3O4外层氧化颗粒。Fe(Cr, Al)2O4尖晶石氧化膜整体上较为致密,可以阻碍氧离子和金属阳离子在氧化膜内的扩散,提高合金的耐腐蚀性能。此外,高温高压水中添加Li + B导致Fe13Cr5Al4Mo合金的腐蚀增重和氧化膜厚度发生变化,且抑制了外层氧化颗粒的产生,这与Li + B水溶液较高的pH值和Li+、B3+的相互作用有关。

关键词 FeCrAl合金高温高压水腐蚀氧化膜显微组织    
Abstract

FeCrAl alloys are promising candidate materials for accident-tolerant-fuel (ATF) claddings owing to their good high-temperature mechanical property, irradiation-swelling resistance, and high-temperature steam-oxidation performance. However, excellent corrosion resistance is also required in high-temperature high-pressure water environments when the alloys are used as ATF claddings. Therefore, in this work, the corrosion behavior of a Fe13Cr5Al4Mo alloy in 360oC, 18.6 MPa deionized water and 360oC, 18.6 MPa, 3.5 mg/L Li + 1000 mg/L B aqueous solution was studied. Results revealed that the weight gain and growth rate of the Fe13Cr5Al4Mo alloy were lower than that of the reference zirconium alloy, indicating a better corrosion property of the Fe13Cr5Al4Mo alloy. Moreover, an oxide film comprising Fe(Cr, Al)2O4 nanospinels formed on the Fe13Cr5Al4Mo alloy in both water environments, and Fe3O4 outer-oxide particles were observed in deionized water. The good corrosion performance of Fe13Cr5Al4Mo alloy was attributed to the compact spinel-oxide film, which could inhibit the diffusion of oxygen ions and metal cations. Adding Li + B into water changed the corrosion weight gain and oxide-film thickness of the Fe13Cr5Al4Mo alloy and impeded the formation of outer-oxide particles, which may be related to the high pH of alkaline Li + B aqueous solution and the interactions between Li+ and B3+.

Key wordsFeCrAl alloy    high-temperature high-pressure water    corrosion    oxide film    microstructure
收稿日期: 2021-12-22     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51871141)
作者简介: 林晓冬,男,1991年生,博士
AlloyCrAlMoYFe
Nominal13540.02Bal.
Measured12.995.034.020.015Bal.
表1  Fe13Cr5Al4Mo合金的名义和实测成分 (mass fraction / %)
图1  Fe13Cr5Al4Mo合金管的基体显微组织
图2  Fe13Cr5Al4Mo合金中的第二相形貌、成分和SAED花样
图3  Fe13Cr5Al4Mo和Zr-4合金在去离子水和Li + B水溶液中的腐蚀增重曲线
图4  Fe13Cr5Al4Mo合金在去离子水和Li + B水溶液中腐蚀不同时间后的氧化膜表面形貌
图5  Fe13Cr5Al4Mo合金在去离子水和Li + B水溶液中腐蚀不同时间后的氧化膜截面形貌
Water environment42 d100 d250 d
Deionized water0.52 ± 0.081.42 ± 0.801.46 ± 0.20
Li + B solution0.36 ± 0.121.11 ± 0.231.55 ± 0.75
表2  Fe13Cr5Al4Mo合金在360℃、18.6 MPa去离子水和360℃、18.6 MPa、3.5 mg/L Li + 1000 mg/L B水溶液中腐蚀不同时间的氧化膜厚度 (μm)
图6  Fe13Cr5Al4Mo合金在去离子水和Li + B水溶液中腐蚀不同时间后的XRD谱
图7  Fe13Cr5Al4Mo合金在去离子水中腐蚀100 d后氧化膜的截面显微组织、元素分布、SAED花样及快速Fourier变换(FFT)结果
图8  Fe13Cr5Al4Mo合金在去离子水中腐蚀250 d后氧化膜的截面显微组织、元素分布、SAED花样及FFT结果
图9  Fe13Cr5Al4Mo合金在Li + B水溶液中腐蚀100 d后氧化膜的截面显微组织、元素分布、SAED花样及FFT结果
图10  Fe13Cr5Al4Mo合金在Li + B水溶液中腐蚀250 d后氧化膜的截面显微组织、元素分布和SAED花样
图11  Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀过程示意图
1 Charit I. Accident tolerant nuclear fuels and cladding materials [J]. JOM, 2018, 70: 173
doi: 10.1007/s11837-017-2701-3
2 Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
3 Field K G, Yamamoto Y, Pint B A, et al. Accident tolerant FeCrAl fuel cladding: Current status towards commercialization [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. New York: Springer, 2019: 1381
4 Huang X, Li X Y, Fang X D, et al. Research progress in FeCrAl alloys for accident-tolerant fuel cladding [J]. J. Mater. Eng., 2020, 48(3): 19
4 黄希, 李小燕, 方晓东 等. 容错事故燃料包壳用FeCrAl合金的研究进展 [J]. 材料工程, 2020, 48(3): 19
5 Tao X K, Huang Z G, Guo Q M, et al. Research progress of FeCrAl alloy for cladding material of new type of light water reactor [J]. Hot Work. Technol., 2018, 47(6): 23
5 陶小康, 黄重国, 郭青苗 等. 新型轻水反应堆包壳材料FeCrAl合金的研究进展 [J]. 热加工工艺, 2018, 47(6): 23
6 Zhang Y Y, Wang H, An X G, et al. Dynamic strain aging behavior of accident tolerance fuel cladding FeCrAl-based alloy for advanced nuclear energy [J]. J. Mater. Sci., 2021, 56: 8815
doi: 10.1007/s10853-021-05820-6
7 Opila E J, Myers D L. Alumina volatility in water vapor at elevated temperatures [J]. J. Am. Ceram. Soc., 2004, 87: 1701
doi: 10.1111/j.1551-2916.2004.01701.x
8 Pan D, Zhang R Q, Wang H, et al. Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam [J]. J. Alloys Compd., 2016, 684: 549
doi: 10.1016/j.jallcom.2016.05.145
9 Park D J, Kim H G, Park J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment [J]. Corros. Sci., 2015, 94: 459
doi: 10.1016/j.corsci.2015.02.027
10 Parker S S, White J, Hosemann P, et al. Oxidation kinetics of ferritic alloys in high-temperature steam environments [J]. JOM, 2018, 70: 186
doi: 10.1007/s11837-017-2639-5
11 Pint B A. Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam [J]. Corros. Rev., 2017, 35: 167
doi: 10.1515/corrrev-2016-0067
12 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
13 Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
14 Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
15 Rebak R B, Larsen M, Kim Y J. Characterization of oxides formed on iron-chromium-aluminum alloy in simulated light water reactor environments [J]. Corros. Rev., 2017, 35: 177
doi: 10.1515/corrrev-2017-0011
16 Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
17 Song L J, Liu F H, Li C T, et al. Effect of B-Li water chemistry on corrosion of metal materials of nuclear power plant [J]. Nucl. Sci. Eng., 2014, 34: 97
17 宋利君, 刘飞华, 李成涛 等. B-Li水化学对核电站金属材料腐蚀的影响 [J]. 核科学与工程, 2014, 34: 97
18 Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
doi: 10.1016/j.corsci.2012.01.002
19 Wei K J, Wang X P, Zhu M H, et al. Effects of Li, B and H elements on corrosion property of oxide films on ZIRLO alloy in 300oC/14 MPa lithium borate buffer solutions [J]. Corros. Sci., 2021, 181: 109216
20 Molander A, Norring K, Andersson P O, et al. Environmental effects on PWSCC initiation and propagation in alloy 600 [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. New York: Springer, 2011: 1699
21 Vankeerberghen M, Weyns G, Gavrilov S, et al. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions [J]. J. Nucl. Mater., 2009, 384: 274
doi: 10.1016/j.jnucmat.2008.11.034
22 Liu W Q, Zhou B X, Li Q, et al. Detrimental role of LiOH on the oxide film formed on zircaloy-4 [J]. Corros. Sci., 2005, 47: 1855
doi: 10.1016/j.corsci.2004.08.003
23 Billot P, Yagnik S, Ramasubramanian N, et al. The role of lithium and boron on the corrosion of zircaloy-4 under demanding PWR-type conditions [A]. Zirconium in the Nuclear Industry: 13th International Symposium [C]. West Conshohocken: American Society for Testing and Materials, 2002: 169
24 Zhao Y F, Tang M, Jiang E, et al. Inhibition effects of low concentration of boron on corrosion of zirconium alloy [J]. Nucl. Power Eng., 2019, 40(2): 32
24 赵永福, 唐敏, 姜峨 等. 低浓度硼对锆合金缓蚀作用研究 [J]. 核动力工程, 2019, 40(2): 32
25 Li J. The focused-ion-beam microscope—More than a precision ion milling machine [J]. JOM, 2006, 58(3): 27
26 Cao X Y, Zhu P, Wang W, et al. Effect of thermal aging on oxide film of stainless steel weld overlay cladding exposed to high temperature water [J]. Mater. Charact., 2018, 138: 195
doi: 10.1016/j.matchar.2018.02.010
27 Hanbury R D, Was G S. Oxide growth and dissolution on 316L stainless steel during irradiation in high temperature water [J]. Corros. Sci., 2019, 157: 305
doi: 10.1016/j.corsci.2019.06.006
28 Kuang W J, Han E H, Wu X Q, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52: 3654
doi: 10.1016/j.corsci.2010.07.015
29 Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl. Sci. Technol., 2008, 45: 975
doi: 10.1080/18811248.2008.9711883
30 Lister D H, Davidson R D, Mcalpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water [J]. Corros. Sci., 1987, 27: 113
doi: 10.1016/0010-938X(87)90068-0
31 Macdonald D D, Urquidi-Macdonald M. Theory of steady-state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
doi: 10.1149/1.2086949
32 Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
33 Matthews R P, Knusten R D, Westraadt J E, et al. Intergranular oxidation of 316L stainless steel in the PWR primary water environment [J]. Corros. Sci., 2017, 125: 175
doi: 10.1016/j.corsci.2017.06.023
34 Macdonald D D. Passivity—The key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
doi: 10.1351/pac199971060951
35 Wu W S, Ran G, Li Y P, et al. Early corrosion behaviour of irradiated FeCrAl alloy in a simulated pressurized water reactor environment [J]. Corros. Sci., 2020, 174: 108824
36 Shen Z, Tweddle D, Yu H B, et al. Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization [J]. Acta Mater., 2020, 194: 321
doi: 10.1016/j.actamat.2020.05.010
37 Robino C V. Representation of mixed reactive gases on free energy (Ellingham-Richardson) diagrams [J]. Metall. Mater. Trans., 1996, 27B: 65
38 Sun H, Wu X Q, Han E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
doi: 10.1016/j.corsci.2012.03.022
39 Shu M, Wang C L, Chen Y. Studies on electrochemical corrosion behaviors and 316NG stainless steel in boron-lithium solutions [J]. Nucl. Power Eng., 2018, 39(5): 63
39 舒茗, 王丛林, 陈勇. 316NG不锈钢在硼-锂溶液中的电化学腐蚀行为研究 [J]. 核动力工程, 2018, 39(5): 63
40 Kaczorowski D, Combrade P, Vernot J P, et al. Water chemistry effect on the wear of stainless steel in nuclear power plant [J]. Tribol. Int., 2006, 39: 1503
doi: 10.1016/j.triboint.2006.03.005
41 Park Y J, Choi K C, Ha Y K. Solubility study of nickel ferrite in boric acid using a flow-through autoclave system under high temperature and high pressure [J]. Nucl. Eng. Technol., 2016, 48: 554
doi: 10.1016/j.net.2016.01.001
42 Tremaine P R, Leblanc J C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300oC [J]. J. Solution Chem., 1980, 9: 415
doi: 10.1007/BF00645517
43 Cox B, Ungurelu M, Wong Y M, et al. Mechanisms of LiOH degradation and H3BO3 repair of ZrO2 films [A]. Zirconium in the Nuclear Industry: 11th International Symposium [C]. West Conshohocken: American Society for Testing and Materials, 1996: 114
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[6] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[7] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[8] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[9] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[13] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.