|
|
Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为 |
林晓冬1, 马海滨2( ), 任啟森2, 孙蓉蓉1, 张文怀1, 胡丽娟1, 梁雪3, 李毅丰1, 姚美意1( ) |
1.上海大学 材料研究所 上海 200072 2.中广核研究院有限公司 核燃料与材料研究所 深圳 518026 3.上海大学 微结构重点实验室 上海 200444 |
|
Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments |
LIN Xiaodong1, MA Haibin2( ), REN Qisen2, SUN Rongrong1, ZHANG Wenhuai1, HU Lijuan1, LIANG Xue3, LI Yifeng1, YAO Meiyi1( ) |
1.Institute of Materials, Shanghai University, Shanghai 200072, China 2.Nuclear Fuel and Materials Department, China Nuclear Power Technology Research Institute, Shenzhen 518026, China 3.Laboratory for Microstructures, Shanghai University, Shanghai 200444, China |
引用本文:
林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
Xiaodong LIN,
Haibin MA,
Qisen REN,
Rongrong SUN,
Wenhuai ZHANG,
Lijuan HU,
Xue LIANG,
Yifeng LI,
Meiyi YAO.
Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. Acta Metall Sin, 2022, 58(12): 1611-1622.
1 |
Charit I. Accident tolerant nuclear fuels and cladding materials [J]. JOM, 2018, 70: 173
doi: 10.1007/s11837-017-2701-3
|
2 |
Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
|
3 |
Field K G, Yamamoto Y, Pint B A, et al. Accident tolerant FeCrAl fuel cladding: Current status towards commercialization [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. New York: Springer, 2019: 1381
|
4 |
Huang X, Li X Y, Fang X D, et al. Research progress in FeCrAl alloys for accident-tolerant fuel cladding [J]. J. Mater. Eng., 2020, 48(3): 19
|
4 |
黄希, 李小燕, 方晓东 等. 容错事故燃料包壳用FeCrAl合金的研究进展 [J]. 材料工程, 2020, 48(3): 19
|
5 |
Tao X K, Huang Z G, Guo Q M, et al. Research progress of FeCrAl alloy for cladding material of new type of light water reactor [J]. Hot Work. Technol., 2018, 47(6): 23
|
5 |
陶小康, 黄重国, 郭青苗 等. 新型轻水反应堆包壳材料FeCrAl合金的研究进展 [J]. 热加工工艺, 2018, 47(6): 23
|
6 |
Zhang Y Y, Wang H, An X G, et al. Dynamic strain aging behavior of accident tolerance fuel cladding FeCrAl-based alloy for advanced nuclear energy [J]. J. Mater. Sci., 2021, 56: 8815
doi: 10.1007/s10853-021-05820-6
|
7 |
Opila E J, Myers D L. Alumina volatility in water vapor at elevated temperatures [J]. J. Am. Ceram. Soc., 2004, 87: 1701
doi: 10.1111/j.1551-2916.2004.01701.x
|
8 |
Pan D, Zhang R Q, Wang H, et al. Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam [J]. J. Alloys Compd., 2016, 684: 549
doi: 10.1016/j.jallcom.2016.05.145
|
9 |
Park D J, Kim H G, Park J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment [J]. Corros. Sci., 2015, 94: 459
doi: 10.1016/j.corsci.2015.02.027
|
10 |
Parker S S, White J, Hosemann P, et al. Oxidation kinetics of ferritic alloys in high-temperature steam environments [J]. JOM, 2018, 70: 186
doi: 10.1007/s11837-017-2639-5
|
11 |
Pint B A. Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam [J]. Corros. Rev., 2017, 35: 167
doi: 10.1515/corrrev-2016-0067
|
12 |
Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
|
13 |
Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
|
14 |
Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
|
15 |
Rebak R B, Larsen M, Kim Y J. Characterization of oxides formed on iron-chromium-aluminum alloy in simulated light water reactor environments [J]. Corros. Rev., 2017, 35: 177
doi: 10.1515/corrrev-2017-0011
|
16 |
Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
|
17 |
Song L J, Liu F H, Li C T, et al. Effect of B-Li water chemistry on corrosion of metal materials of nuclear power plant [J]. Nucl. Sci. Eng., 2014, 34: 97
|
17 |
宋利君, 刘飞华, 李成涛 等. B-Li水化学对核电站金属材料腐蚀的影响 [J]. 核科学与工程, 2014, 34: 97
|
18 |
Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
doi: 10.1016/j.corsci.2012.01.002
|
19 |
Wei K J, Wang X P, Zhu M H, et al. Effects of Li, B and H elements on corrosion property of oxide films on ZIRLO alloy in 300oC/14 MPa lithium borate buffer solutions [J]. Corros. Sci., 2021, 181: 109216
|
20 |
Molander A, Norring K, Andersson P O, et al. Environmental effects on PWSCC initiation and propagation in alloy 600 [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. New York: Springer, 2011: 1699
|
21 |
Vankeerberghen M, Weyns G, Gavrilov S, et al. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions [J]. J. Nucl. Mater., 2009, 384: 274
doi: 10.1016/j.jnucmat.2008.11.034
|
22 |
Liu W Q, Zhou B X, Li Q, et al. Detrimental role of LiOH on the oxide film formed on zircaloy-4 [J]. Corros. Sci., 2005, 47: 1855
doi: 10.1016/j.corsci.2004.08.003
|
23 |
Billot P, Yagnik S, Ramasubramanian N, et al. The role of lithium and boron on the corrosion of zircaloy-4 under demanding PWR-type conditions [A]. Zirconium in the Nuclear Industry: 13th International Symposium [C]. West Conshohocken: American Society for Testing and Materials, 2002: 169
|
24 |
Zhao Y F, Tang M, Jiang E, et al. Inhibition effects of low concentration of boron on corrosion of zirconium alloy [J]. Nucl. Power Eng., 2019, 40(2): 32
|
24 |
赵永福, 唐敏, 姜峨 等. 低浓度硼对锆合金缓蚀作用研究 [J]. 核动力工程, 2019, 40(2): 32
|
25 |
Li J. The focused-ion-beam microscope—More than a precision ion milling machine [J]. JOM, 2006, 58(3): 27
|
26 |
Cao X Y, Zhu P, Wang W, et al. Effect of thermal aging on oxide film of stainless steel weld overlay cladding exposed to high temperature water [J]. Mater. Charact., 2018, 138: 195
doi: 10.1016/j.matchar.2018.02.010
|
27 |
Hanbury R D, Was G S. Oxide growth and dissolution on 316L stainless steel during irradiation in high temperature water [J]. Corros. Sci., 2019, 157: 305
doi: 10.1016/j.corsci.2019.06.006
|
28 |
Kuang W J, Han E H, Wu X Q, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52: 3654
doi: 10.1016/j.corsci.2010.07.015
|
29 |
Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl. Sci. Technol., 2008, 45: 975
doi: 10.1080/18811248.2008.9711883
|
30 |
Lister D H, Davidson R D, Mcalpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water [J]. Corros. Sci., 1987, 27: 113
doi: 10.1016/0010-938X(87)90068-0
|
31 |
Macdonald D D, Urquidi-Macdonald M. Theory of steady-state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
doi: 10.1149/1.2086949
|
32 |
Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
|
33 |
Matthews R P, Knusten R D, Westraadt J E, et al. Intergranular oxidation of 316L stainless steel in the PWR primary water environment [J]. Corros. Sci., 2017, 125: 175
doi: 10.1016/j.corsci.2017.06.023
|
34 |
Macdonald D D. Passivity—The key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
doi: 10.1351/pac199971060951
|
35 |
Wu W S, Ran G, Li Y P, et al. Early corrosion behaviour of irradiated FeCrAl alloy in a simulated pressurized water reactor environment [J]. Corros. Sci., 2020, 174: 108824
|
36 |
Shen Z, Tweddle D, Yu H B, et al. Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization [J]. Acta Mater., 2020, 194: 321
doi: 10.1016/j.actamat.2020.05.010
|
37 |
Robino C V. Representation of mixed reactive gases on free energy (Ellingham-Richardson) diagrams [J]. Metall. Mater. Trans., 1996, 27B: 65
|
38 |
Sun H, Wu X Q, Han E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
doi: 10.1016/j.corsci.2012.03.022
|
39 |
Shu M, Wang C L, Chen Y. Studies on electrochemical corrosion behaviors and 316NG stainless steel in boron-lithium solutions [J]. Nucl. Power Eng., 2018, 39(5): 63
|
39 |
舒茗, 王丛林, 陈勇. 316NG不锈钢在硼-锂溶液中的电化学腐蚀行为研究 [J]. 核动力工程, 2018, 39(5): 63
|
40 |
Kaczorowski D, Combrade P, Vernot J P, et al. Water chemistry effect on the wear of stainless steel in nuclear power plant [J]. Tribol. Int., 2006, 39: 1503
doi: 10.1016/j.triboint.2006.03.005
|
41 |
Park Y J, Choi K C, Ha Y K. Solubility study of nickel ferrite in boric acid using a flow-through autoclave system under high temperature and high pressure [J]. Nucl. Eng. Technol., 2016, 48: 554
doi: 10.1016/j.net.2016.01.001
|
42 |
Tremaine P R, Leblanc J C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300oC [J]. J. Solution Chem., 1980, 9: 415
doi: 10.1007/BF00645517
|
43 |
Cox B, Ungurelu M, Wong Y M, et al. Mechanisms of LiOH degradation and H3BO3 repair of ZrO2 films [A]. Zirconium in the Nuclear Industry: 11th International Symposium [C]. West Conshohocken: American Society for Testing and Materials, 1996: 114
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|