Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1623-1632    DOI: 10.11900/0412.1961.2021.00576
  研究论文 本期目录 | 过刊浏览 |
Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为
刘雨薇1,2, 顾天真1,2,3, 王振尧1,2(), 汪川1,2, 曹公望1,2
1.中国科学院金属研究所 沈阳 110016
2.辽宁沈阳土壤大气环境材料腐蚀国家野外科学观测研究站 沈阳 110016
3.中国科学技术大学 材料科学与工程学院 沈阳 110016
Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months
LIU Yuwei1,2, GU Tianzhen1,2,3, WANG Zhenyao1,2(), WANG Chuan1,2, CAO Gongwang1,2
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Liaoning Shenyang Soil and Atmosphere Corrosion of Material National Observation and Research Station, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
Yuwei LIU, Tianzhen GU, Zhenyao WANG, Chuan WANG, Gongwang CAO. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. Acta Metall Sin, 2022, 58(12): 1623-1632.

全文: PDF(2988 KB)   HTML
摘要: 

采用腐蚀失重法、宏观形貌观察法、SEM、XRD、电化学及拉伸实验等分析手段对Q235和Q450NQR1在南沙大气环境中暴晒21和34个月后的腐蚀行为进行研究。结果表明,2种钢在南沙海洋大气环境中腐蚀动力学过程分为2个阶段,第二阶段腐蚀速率较第一阶段小。耐候钢Q450NQR1在短期内就已体现出更好的耐蚀性。暴晒21和34个月后,Q235朝天面和朝地面的锈层均比Q450NQR1的厚,且锈层中的裂纹更多,利于O2和Cl-向基体扩散,加速腐蚀过程。2种碳钢朝天面和朝地面锈层的主要成分组成为γ-FeOOH、α-FeOOH、β-FeOOH和Fe3O4,各产物的相对含量随着暴晒时间的延长都有一定的差异。此外,2种钢的朝地面均比朝天面的腐蚀严重,这是由于朝地面的锈层极易脱落,使其对腐蚀介质的阻碍作用减弱。随着暴晒时间的延长,碳钢Q235和耐候钢Q450NQR1表面锈层不断增加,抗拉强度逐渐降低。即在使用过程中随着锈层的增厚,Q235和Q450NQR1钢越容易失效,引发安全事故。

关键词 热带海洋大气碳钢锈层结构力学性能    
Abstract

Many countries have begun to focus on the development and utilization of marine resources, involving ports, docks, oil production platforms, cross-sea bridges, large ships, and other marine engineering facilities, since beginning of the 21st century. Marine atmospheric corrosion issues encountered during construction put the safety of these marine engineering facilities in jeopardy. The Nansha Islands, which are located in the southernmost part of the South China Sea, are in a typical tropical marine atmosphere environment with no long-term corrosion data. The steel used in marine engineering is the premise of expanding marine space and exploiting marine resources, as well as the guarantee of enhancing marine national defense strength and safeguarding maritime rights and interests. Because of its poor corrosion resistance, the service life has certain limitations. As a result, studying the corrosion mechanism of carbon steel in this typical atmospheric environment after long-term exposure is crucial for engineers. The corrosion behavior of low carbon steel Q235 and weathering steel Q450NQR1 was investigated using the corrosion loss method, macroscopic morphology observation, SEM, XRD, and electrochemical and tensile tests after 34 months of exposure in the Nansha atmospheric environment. The results show that the corrosion dynamic of the two sheets of steel in the marine atmosphere of Nansha Islands can be divided into two stages. The corrosion rate of the second stage is smaller than that of the first stage. Weathering steel Q450NQR1 has demonstrated better corrosion resistance in a short exposure time. The rust layer on the skyward and field-ward sides of mild steel Q235 is thicker than that of weathering steel Q450NQR1 after 21 and 34 months of exposure, and there are more cracks in the rust layer, which could promote oxygen and chloridion diffusion to the substrate and speed up the corrosion process. The main components of corrosion products are γ-FeOOH, α-FeOOH, β-FeOOH, and Fe3O4, the relative contents of each product were different with the extension of exposure time. Furthermore, corrosion on the field-ward sides of the two steel sheets was worse than corrosion on the skyward sides. This is because the rust layer on the field-ward side was easily removed, resulting in a weakened resistance to corrosive medium. With the extension of exposure time, the thickness of the rust layer on the skyward side of carbon steel Q235 and weathering steel Q450NQR1 is increasing, and the tensile strength was gradually reduced. That is, Q235 and Q450NQR1 are more likely to fail owing to the thickening of the rust layer during use resulting in safety accidents.

Key wordstropical marine atmosphere    carbon steel    rust structure    mechanical property
收稿日期: 2021-12-24     
ZTFLH:  TG172.3  
基金资助:辽宁沈阳土壤大气环境材料腐蚀国家野外科学观测研究站项目
作者简介: 刘雨薇,女,1990年生,副研究员,博士
SteelCSiMnPSCrNiCuFe
Q2350.220.080.100.0150.003---Bal.
Q450NQR10.080.310.410.0730.0060.470.150.29Bal.
表1  Q235和Q450NQR1钢的化学成分 (mass fraction / %)
图1  拉伸样品示意图
图2  碳钢Q235和耐候钢Q450NQR1的腐蚀深度随暴晒时间的变化
图3  Q235和Q450NQR1表面锈层相组成及其相对含量随暴晒时间的变化
图4  Q235和Q450NQR1表面锈层的宏观形貌
图5  Q235和Q450NQR1朝天面和朝地面的锈层截面形貌
图6  低碳钢Q235和耐候钢Q450NQR1暴晒34个月后朝天面的锈层截面形貌和元素分布
图7  暴晒21和34个月后Q235和Q450NQR1的极化曲线
SteelEcorr / mVicorr / (μA·cm-2)
Q235-21ms-130.477.97
Q235-21mf-303.6798.54
Q235-34ms-95.3316.98
Q235-34mf-418.43119.90
Q450-21ms-176.697.11
Q450-21mf-445.5280.06
Q450-34ms-3.366.18
Q450-34mf-430.7089.61
表2  暴晒不同周期后的腐蚀电位(Ecorr)和腐蚀电流密度(icorr)
图8  Q235和Q450NQR1的应力-应变曲线
1 Hou W, Liang C. Eight-year atmospheric corrosion exposure of steels in China [J]. Corrosion, 1999, 55: 65
doi: 10.5006/1.3283967
2 Surnam B Y R, Oleti C V. Atmospheric corrosion in Mauritius [J]. Corros. Eng., Sci. Technol., 2012, 47: 446
3 Allam I M, Arlow J S, Saricimen H. Initial stages of atmospheric corrosion of steel in the Arabian Gulf [J]. Corros. Sci., 1991, 32: 417
doi: 10.1016/0010-938X(91)90123-7
4 Kucera V, Knotkova D, Gullman J, et al. Corrosion of structural metals in atmospheres with different corrosivity at 8 years exposure in Sweden and Czechoslovakia [J]. Key Eng. Mater., 1988, 20-28: 167
doi: 10.4028/www.scientific.net/KEM.20-28.167
5 Almeida E, Morcillo M, Rosales B, et al. Atmospheric corrosion of mild steel. Part I—Rural and urban atmospheres [J]. Mater. Corros., 2000, 51: 859
doi: 10.1002/1521-4176(200012)51:12<859::AID-MACO859>3.0.CO;2-G
6 Almeida E, Morcillo M, Rosales B. Atmospheric corrosion of mild steel. Part II—Marine atmospheres [J]. Mater. Corros., 2000, 51: 865
doi: 10.1002/1521-4176(200012)51:12<865::AID-MACO865>3.0.CO;2-S
7 Pan C, Guo M X, Han W, et al. Study of corrosion evolution of carbon steel exposed to an industrial atmosphere [J]. Corros. Eng., Sci. Technol., 2019, 54: 241
8 Morcillo M, Alcántara J, Díaz I, et al. Marine atmospheric corrosion of carbon steels [J]. Rev. Metal., 2015, 51: e045
doi: 10.3989/revmetalm.045
9 Han W, Pan C, Wang Z Y, et al. Initial atmospheric corrosion of carbon steel in industrial environment [J]. J. Mater. Eng. Perform., 2015, 24: 864
doi: 10.1007/s11665-014-1329-5
10 Morcillo M, Chico B, de la Fuente D, et al. Looking back on contributions in the field of atmospheric corrosion offered by the MICAT ibero-american testing network [J]. Int. J. Corros., 2012, 2012: 824365
11 Ericsson R. The influence of sodium chloride on the atmospheric corrosion of steel [J]. Mater. Corros., 1978, 29: 400
12 Perez F C. Atmospheric corrosion of steel in a humid tropical climate—Influence of pollution, humidity, temperature, solar radiation and rainfall [J]. Corrosion, 1984, 40: 170
doi: 10.5006/1.3581934
13 de Meybaum B R, Ayllon E S. Characterization of atmospheric corrosion products on weathering steels [J]. Corrosion, 1980, 36: 345
doi: 10.5006/0010-9312-36.7.345
14 Feliu S, Morcillo M, Chico B. Effect of distance from sea on atmospheric corrosion rate [J]. Corrosion, 1999, 55: 883
doi: 10.5006/1.3284045
15 Melchers R E. Long-term corrosion of cast irons and steel in marine and atmospheric environments [J]. Corros. Sci., 2013, 68: 186
doi: 10.1016/j.corsci.2012.11.014
16 Wang J, Wang Z Y, Ke W. Characterisation of rust formed on carbon steel after exposure to open atmosphere in Qinghai salt lake region [J]. Corros. Eng., Sci. Technol., 2012, 47: 125
17 Li Q X, Wang Z Y, Han W, et al. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere [J]. Corros. Sci., 2008, 50: 365
doi: 10.1016/j.corsci.2007.06.020
18 Wang J J, Guo X D, Zheng W L, et al. Analysis of the corrosion rust on weathering steel and carbon steel exposed in marine atmosphere for three years [J]. Corros. Prot., 2002, 23: 288
18 王建军, 郭小丹, 郑文龙 等. 海洋大气暴露3年的碳钢与耐候钢表面锈层分析 [J]. 腐蚀与防护, 2002, 23: 288
19 Guerra J C, Castañeda A, Corvo F, et al. Atmospheric corrosion of low carbon steel in a coastal zone of Ecuador: Anomalous behavior of chloride deposition versus distance from the sea [J]. Mater. Corros., 2019, 70: 444
doi: 10.1002/maco.201810442
20 Alcántara J, Chico B, Díaz I, et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel [J]. Corros. Sci., 2015, 97: 74
doi: 10.1016/j.corsci.2015.04.015
21 Liu Y W, Zhao H T, Wang Z Y, et al. Corrosion behavior of low-carbon steel and weathering steel in a coastal zone of the spratly islands: A tropical marine atmosphere [J]. Int. J. Electrochem. Sci., 2020, 15: 6464
22 Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
23 Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41: 1687
doi: 10.1016/S0010-938X(99)00005-0
24 Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
25 Li X G, Dong C F, Xiao K, et al. Corrosion/Aging Behavior and Mechanism of Typical Materials in Xisha Marine Atmosphere [M]. Beijing: Science Press, 2014: 37
25 李晓刚, 董超芳, 肖葵 等. 西沙海洋大气环境下典型材料腐蚀/老化行为与机理 [M]. 北京: 科学出版社, 2014: 37
26 Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet–dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
27 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
28 Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
doi: 10.1016/S0010-938X(03)00070-2
29 Iwei F. Atmospheric corrosion of carbon steels and weathering steels in Taiwan [J]. Br. Corros. J., 1991, 26: 209
doi: 10.1179/000705991798269215
30 Stratmann M, Bohnenkamp K, Ramchandran T. The influence of copper upon the atmospheric corrosion of iron [J]. Corros. Sci., 1987, 27: 905
doi: 10.1016/0010-938X(87)90058-8
31 Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
doi: 10.5006/1.3280597
32 Matsushima I, Ueno T. On the protective nature of atmosph rust on low-alloy steel [J]. Corros. Sci., 1971, 11: 129
doi: 10.1016/S0010-938X(71)80089-6
33 Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
34 Misawa T, Hashimoto K, Shimodaira S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J]. Corros. Sci., 1974, 14: 131
doi: 10.1016/S0010-938X(74)80051-X
35 Refait P, Génin J M R. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite [J]. Corros. Sci., 1997, 39: 539
doi: 10.1016/S0010-938X(97)86102-1
36 Rémazeilles C, Refait P. Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides [J]. Corros. Sci., 2008, 50: 856
doi: 10.1016/j.corsci.2007.08.017
37 Refait P H, Abdelmoula M, Génin J M R. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions [J]. Corros. Sci., 1998, 40: 1547
doi: 10.1016/S0010-938X(98)00066-3
38 Refait P, Génin J M R. The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one [J]. Corros. Sci., 1993, 34: 797
doi: 10.1016/0010-938X(93)90101-L
39 Lair V, Antony H, Legrand L, et al. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron [J]. Corros. Sci., 2006, 48: 2050
doi: 10.1016/j.corsci.2005.06.013
40 Antony H, Legrand L, Maréchal L, et al. Study of lepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25oC [J]. Electrochim. Acta, 2005, 51: 745
doi: 10.1016/j.electacta.2005.05.049
41 Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4187
doi: 10.1016/j.corsci.2011.08.028
42 Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
doi: 10.3724/SP.J.1037.2010.00489
42 柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365
doi: 10.3724/SP.J.1037.2010.00489
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[10] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[11] 王周头, 袁清, 张庆枭, 刘升, 徐光. 冷轧中碳梯度马氏体钢的组织与力学性能[J]. 金属学报, 2023, 59(6): 821-828.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.