Please wait a minute...
金属学报  2022, Vol. 58 Issue (12): 1633-1644    DOI: 10.11900/0412.1961.2022.00099
  研究论文 本期目录 | 过刊浏览 |
GH4169合金拘束相关的疲劳裂纹萌生寿命
郭昊函1, 杨杰1(), 刘芳2, 卢荣生3
1.上海理工大学 能源与动力工程学院 上海 200093
2.上海理工大学 机械工程学院 上海 200093
3.华东理工大学 承压系统与安全教育部重点实验室 上海 200237
Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy
GUO Haohan1, YANG Jie1(), LIU Fang2, LU Rongsheng3
1.School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3.Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
引用本文:

郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
Haohan GUO, Jie YANG, Fang LIU, Rongsheng LU. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. Acta Metall Sin, 2022, 58(12): 1633-1644.

全文: PDF(3733 KB)   HTML
摘要: 

以GH4169镍基高温合金为研究对象,基于低周疲劳率相关的晶体塑性本构,引入累积能量耗散和累积塑性滑移2种疲劳指示因子作为疲劳裂纹萌生判据,对不同微缺口深度和长度下的疲劳裂纹萌生寿命进行研究。并基于统一拘束参数Ap,进一步考察拘束与疲劳裂纹萌生寿命的关联。结果表明:2种疲劳指示因子均可较好地预测疲劳裂纹萌生寿命。随着微缺口深度的增加,疲劳裂纹萌生寿命逐渐减少;随着微缺口长度的增加,疲劳裂纹萌生寿命逐渐增加。在不同的微缺口深度和长度下,疲劳裂纹萌生寿命均与Ap存在线性关系。可以根据该线性关系,确定拘束相关的疲劳裂纹萌生寿命。

关键词 拘束疲劳裂纹萌生寿命晶体塑性累积能量耗散累积塑性滑移    
Abstract

Nickel-based GH4169 superalloy is used as turbine disc material in aeroengines because of its good oxidation resistance, good formability, weldability, and high strength. However, turbine disc fatigue failure will inevitably occur in onerous service environments and after a long operation time. To ensure the safety and reliability of aeroengines, the fatigue damage behavior and fatigue life of GH4169 superalloy need to be studied. Constraint is an important factor affecting the fatigue fracture behavior of materials, because changing it will impact the fatigue behavior. To achieve a long service life and high reliability of aeroengines, fatigue and constraint effects must be researched. However, there are only limited studies on the effect of constraint on fatigue crack initiation time. In this study, a crystal plasticity constitutive model based on low cycle fatigue rate correlation was applied to the GH4169 superalloy. Two fatigue indicators, namely the cumulated energy dissipation and cumulated plastic slip, were introduced as fatigue crack initiation criteria to study the fatigue crack initiation time for different micro-notch depths and lengths. In addition, the relationship between constraint and fatigue crack initiation life was further investigated using the unified constraint parameter Ap. The results showed that both cumulated energy dissipation and cumulated plastic slip can accurately predict the fatigue crack initiation time. With the increase in micro-notch depth, the fatigue crack initiation time decreased, while it increased with the increase in micro-notch length. A linear relationship between the fatigue crack initiation time and Ap under different micro-notch depths and lengths was observed. Based on this relationship, the constraint related to the fatigue crack initiation time can be determined.

Key wordsconstraint    fatigue crack    initiation life    crystal plasticity    cumulated energy dissipation    cumulated plastic slip
收稿日期: 2022-03-07     
ZTFLH:  TH114  
基金资助:国家自然科学基金项目(51975378);上海市浦江人才计划项目(21PJD047)
作者简介: 郭昊函,男,1996年生,硕士生
图1  GH4169镍基高温合金的代表体积单元(RVE)
图2  模型加载与尺寸示意图
图3  基于3种不同网格尺寸所得到的应力-应变曲线和塑性滑移云图
图4  应变幅为0.6%时不同微缺口深度模型在循环10 cyc后的累积能量耗散
图5  累积能量耗散与循环周次间的关系
图6  应变幅为0.6%时微缺口左下角点在循环第10 cyc时的滞后回线
图7  应变幅为0.6%时不同微缺口深度模型在循环10 cyc后的累积塑性滑移
图8  累积塑性滑移与循环周次间的关系
图9  基于累积能量耗散和累积塑性滑移疲劳裂纹萌生寿命预测对比
图10  应变幅为0.6%时不同微缺口长度模型在循环10 cyc后的累积能量耗散
图11  累积能量耗散与循环周次间的关系
图12  应变幅0.6%时微缺口左下角点在循环第10 cyc后的滞后回线
图13  应变幅为0.6%时不同微缺口长度模型在循环10 cyc后的累积塑性滑移
图14  累积塑性滑移与循环周次间的关系
图15  基于累积能量耗散和累积塑性滑移疲劳裂纹萌生寿命预测对比
图16  疲劳裂纹萌生寿命与拘束间的关联
图17  所有模型疲劳裂纹萌生寿命与拘束间的关联
1 Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 [J]. Mater. Sci. Eng., 2016, A678: 137
2 Chen F, Liu J, Ou H G, et al. Flow characteristics and intrinsic workability of IN718 superalloy [J]. Mater. Sci. Eng., 2015, A642: 279
3 McDowell D, Dunne F P E. Microstructure-sensitive computational modeling of fatigue crack formation [J]. Int. J. Fatigue, 2010, 32: 1521
doi: 10.1016/j.ijfatigue.2010.01.003
4 Deng G J, Tu S T, Zhang X C, et al. Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650℃ in air [J]. Eng. Fract. Mech., 2016, 153: 35
doi: 10.1016/j.engfracmech.2015.12.014
5 Cini A, Irving P E. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy—Part I: Experimentation and fractographic analysis [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 776
doi: 10.1111/ffe.12544
6 Cini A, Irving P E. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy—Part II: Finite element analysis and prediction method [J]. Fatigue Fract. Eng. Mater. Struct., 2017, 40: 853
doi: 10.1111/ffe.12545
7 Shang D G, Chen J H, Sun G Q, et al. Fatigue characteristics for GH4169 superalloy under uniaxial/multiaxial loading at high temperature [J]. Acta Metall. Sin., 2005, 41: 785
7 尚德广, 陈建华, 孙国芹 等. 单、多轴混合加载下GH4169合金的高温疲劳特性 [J]. 金属学报, 2005, 41: 785
8 Shang D G, Sun G Q, Chen J H, et al. Multiaxial fatigue behavior of Ni-based superalloy GH4169 at 650℃ [J]. Mater. Sci. Eng., 2006, A432: 231
9 Sun G Q, Shang D G. Prediction of fatigue lifetime under multiaxial cyclic loading using finite element analysis [J]. Mater. Des., 2010, 31: 126
doi: 10.1016/j.matdes.2009.06.046
10 Sun G Q, Shang D G, Bao M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials [J]. Int. J. Fatigue, 2010, 32: 1108
doi: 10.1016/j.ijfatigue.2009.12.007
11 Prasad K, Sarkar R, Ghosal P, et al. High temperature low cycle fatigue deformation behaviour of forged IN718 superalloy turbine disc [J]. Mater. Sci. Eng., 2013, A568: 239
12 Walz G, Riesch-Oppermann H. Probabilistic fracture mechanics assessment of flaws in turbine disks including quality assurance procedures [J]. Struct. Saf., 2006, 28: 273
doi: 10.1016/j.strusafe.2005.08.004
13 Wei D S, Yang X G. Investigation and modeling of low cycle fatigue behaviors of two Ni-based superalloys under dwell conditions [J]. Int. J. Press. Vessel. Pip., 2009, 86: 616
doi: 10.1016/j.ijpvp.2009.04.002
14 Ayyappan C, Kumar R, Ramesh P, et al. Experimental and numerical study to predict residual growth in an aeroengine compressor disc after overspeed [J]. Procedia Eng., 2013, 55: 625
doi: 10.1016/j.proeng.2013.03.305
15 Krupp U. Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts [M]. Weinheim: Wiley-VCH, 2007: 1
16 An J L, Wang L, Liu Y, et al. The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature [J]. Mater. Sci. Eng., 2017, A684: 312
17 Alexandre F, Deyber S, Pineau A. Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites [J]. Scr. Mater., 2004, 50: 25
doi: 10.1016/j.scriptamat.2003.09.043
18 Huang X Y, Yu H C, Xu M Q, et al. Experimental investigation on microcrack initiation process in nickel-based superalloy DAGH4169 [J]. Int. J. Fatigue, 2012, 42: 153
doi: 10.1016/j.ijfatigue.2011.09.003
19 Hu D Y, Wang X Y, Mao J X, et al. Creep-fatigue crack growth behavior in GH4169 superalloy [J]. Front. Mech. Eng., 2019, 14: 369
doi: 10.1007/s11465-018-0489-7
20 Guerchais R, Saintier N, Morel F, et al. Micromechanical investigation of the influence of defects in high cycle fatigue [J]. Int. J. Fatigue, 2014, 67: 159
doi: 10.1016/j.ijfatigue.2014.01.005
21 Zhang P, Zhang L, Baxevanakis K P, et al. Modelling short crack propagation in a single crystal nickel-based superalloy using crystal plasticity and XFEM [J]. Int. J. Fatigue, 2020, 136: 105594
22 Zhang P, Baxevanakis K P, Zhao L G. An investigation of short crack propagation in a single crystal Ni-based superalloy using crystal plasticity and the extended finite element method [J]. Procedia Struct. Integr., 2020, 28: 1176
doi: 10.1016/j.prostr.2020.11.099
23 Manonukul A, Dunne F P E. High- and low-cycle fatigue crack initiation using polycrystal plasticity [J]. Proc. Roy. Soc., 2004, 460A: 1881
24 Dunne F P E, Wilkinson A J, Allen R. Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal [J]. Int. J. Plast., 2007, 23: 273
doi: 10.1016/j.ijplas.2006.07.001
25 Guo Q, Guo X L, Fan J L, et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation [J]. Int. J. Fatigue, 2015, 80: 136
doi: 10.1016/j.ijfatigue.2015.04.016
26 Guo Q, Guo X L. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation [J]. Mater. Des., 2016, 90: 248
doi: 10.1016/j.matdes.2015.10.103
27 Yuan G J, Zhang X C, Chen B, et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. J. Mater. Sci. Technol., 2020, 38, 28
doi: 10.1016/j.jmst.2019.05.072
28 Varfolomeev I, Luke M, Moroz S. Experimental and numerical investigations of fatigue crack growth in various specimen geometries [J]. Procedia Eng., 2010, 2: 1829
doi: 10.1016/j.proeng.2010.03.197
29 Hutař P, Seitl S, Knésl Z. Effect of constraint on fatigue crack propagation near threshold in medium carbon steel [J]. Comput. Mater. Sci., 2006, 37: 51
30 Hutař P, Seitl S, Kruml T. Effect of specimen geometry on fatigue crack propagation in threshold region [A]. Proceedings of the 12th International Conference on Fracture [C]. icf12 Ottawa, 2009: 4: 2914
31 Tong J. T-stress and its implications for crack growth [J]. Eng. Fract. Mech., 2002, 69: 1325
doi: 10.1016/S0013-7944(02)00002-4
32 Seitl S, Hutař P. Fatigue-crack propagation near a threshold region in the framework of two-parameter fracture mechanics [J]. Mater. Technol., 2007, 41: 135
33 Yang J, Guo G L, Lu R S, et al. Numerical modelling of a new FCP model and a correlation of the FCP rate with the constraint [J]. Int. J. Fatigue, 2022, 163: 107036
34 Asaro R J. Micromechanics of crystals and polycrystals [J]. Adv. Appl. Mech., 1983, 23: 115
35 Asaro R J, Rice J R. Strain localization in ductile single crystals [J]. J. Mech. Phys. Solids, 1977, 25: 309
doi: 10.1016/0022-5096(77)90001-1
36 Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metall., 1983, 31: 1951
doi: 10.1016/0001-6160(83)90014-7
37 Zhong F. Researches on tensile properties and fatigue behavior of Ni-based alloy GH4169 based on crystal plasticity finite element [D]. Shanghai: East China University of Science and Technology, 2017
37 钟飞. 基于晶体塑性有限元的镍基合金GH4169拉伸性能及疲劳行为研究 [D]. 上海: 华东理工大学, 2017
38 Barbe F, Decker L, Jeulin D, et al. Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model [J]. Int. J. Plast., 2001, 17: 513
doi: 10.1016/S0749-6419(00)00061-9
39 Lin B, Zhao L G, Tong J. A crystal plasticity study of cyclic constitutive behaviour, crack-tip deformation and crack-growth path for a polycrystalline nickel-based superalloy [J]. Eng. Fract. Mech., 2011, 78: 2174
doi: 10.1016/j.engfracmech.2011.04.006
40 Yang J, Wang G Z, Xuan F Z, et al. Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain [J]. Fatigue Fract. Eng. Mater. Struct., 2013, 36: 504
doi: 10.1111/ffe.12019
41 Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraints with fracture toughness [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37: 132
doi: 10.1111/ffe.12094
42 Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2014, 115: 296
doi: 10.1016/j.engfracmech.2013.11.018
43 Chikh B O, Imad A, Benguediab M. Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel [J]. Comput. Mater. Sci., 2008, 43: 1010
doi: 10.1016/j.commatsci.2008.02.019
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[4] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[5] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[6] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[7] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[8] 戴悦, 杨杰, 陈浩峰. 核电安全端结构中材料拘束的作用范围[J]. 金属学报, 2021, 57(12): 1645-1652.
[9] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[10] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[11] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[12] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[13] 李一哲, 龚宝明, 刘秀国, 王东坡, 邓彩艳. 面外拘束效应对单边缺口拉伸试样断裂韧性的影响[J]. 金属学报, 2018, 54(12): 1785-1791.
[14] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[15] 韩世伟, 石多奇, 杨晓光, 苗国磊. 微结构相关的高循环疲劳分散性计算方法研究*[J]. 金属学报, 2016, 52(3): 289-297.