Please wait a minute...
金属学报  2022, Vol. 58 Issue (8): 1065-1071    DOI: 10.11900/0412.1961.2021.00400
  研究论文 本期目录 | 过刊浏览 |
Y元素对Cu-Al-Ni高温形状记忆合金性能的影响
张鑫1, 崔博2, 孙斌3, 赵旭4, 张欣1(), 刘庆锁1, 董治中1()
1.天津理工大学 材料科学与工程学院 天津 300384
2.中国工程物理研究院 原子核物理与化学研究所 绵阳 621900
3.哈尔滨工程大学 材料科学与化学工程学院 哈尔滨 150001
4.北京天宜上佳高新材料股份有限公司 北京 102400
Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy
ZHANG Xin1, CUI Bo2, SUN Bin3, ZHAO Xu4, ZHANG Xin1(), LIU Qingsuo1, DONG Zhizhong1()
1.School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
2.Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
3.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
4.Beijing Tianyi Shangjia High-Tech Materials Co. Ltd., Beijing 102400, China
引用本文:

张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
Xin ZHANG, Bo CUI, Bin SUN, Xu ZHAO, Xin ZHANG, Qingsuo LIU, Zhizhong DONG. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. Acta Metall Sin, 2022, 58(8): 1065-1071.

全文: PDF(2693 KB)   HTML
摘要: 

利用XRD、OM、SEM、TEM、电子万能力学试验机以及电化学工作站对Cu-13Al-4Ni-xY (x = 0.2、0.5,质量分数,%)高温形状记忆合金进行组织观察和性能测试。研究结果表明,加入Y元素后,Cu-13Al-4Ni-xY合金的室温组织主要为18R马氏体基体,以及具有六方结构的(Cu, Al, Ni)4Y第二相。随着Y元素含量的提高,Cu-13Al-4Ni-xY合金的力学性能大幅提升。当Y含量为0.5%时,压缩断裂应变与断裂强度从未添加Y时的10.5%和580 MPa分别提升到了19.3%和1185 MPa,且合金的断裂形式由沿晶断裂变为穿晶断裂。电化学实验结果表明,Y元素的添加使合金耐蚀性稍有下降。

关键词 铜基形状记忆合金显微组织力学性能形状记忆效应    
Abstract

Cu-Al-Ni alloys are not yet widely used due to issues related to their coarse grains, unacceptable plasticity, and poor thermal stability. Here, the physical and mechanical properties, as well as the corrosion behavior, of Cu-Al-Ni alloys doped with Y element (Cu-13Al-4Ni-xY (x = 0.2, 0.5, mass fraction, %)) were studied. XRD, OM, SEM, TEM, electronic universal testing machine, and electrochemical workstation were used to characterize the microstructures and measure the properties of the Cu-13Al-4Ni-xY alloys. The results showed that at room temperature, the microstructure of Cu-13Al-4Ni-xY alloys was mainly an 18R martensite matrix. The (Cu, Al, Ni)4Y second phase was characterized to have a hexagonal structure. The mechanical properties of the Cu-13Al-4Ni-xY alloys improved as the Y element content increased. For example, when the Y content was increased from 0% to 0.5%, the compressive fracture strain increased from 10.5% to 19.3% and the fracture strength increased from 580 to 1185 MPa. Additionally, the fracture type of the alloy changed from intergranular to transgranular with the addition of Y. Finally, the results from electrochemical experiments showed that the corrosion behavior of the alloys decreased slightly with the addition of Y.

Key wordsCu-based shape memory alloy    microstructure    mechanical property    shape memory effect
收稿日期: 2021-09-16     
ZTFLH:  TV139.2  
基金资助:国家自然科学基金项目(52071236);天津市自然科学基金项目(18JCYBJC87000)
作者简介: 张 欣, zhangxin3510110@tjut.edu.cn,主要从事记忆合金材料研究董治中, zhizhong.dong@email.tjut.edu.cn,主要从事超临界耐热钢、海洋工程材料及记忆合金材料研究
张 鑫,男,1997年生,硕士生
图1  Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的OM和SEM像
图2  Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的XRD谱
图3  Cu-13Al-4Ni-0.5Y合金的TEM明场像、SAED花样、HRTEM像及第二相区域EDS元素面扫描图
图4  Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的压缩应力-应变曲线及断口形貌
图5  Cu-13Al-4Ni-xY (x = 0.2、0.5)合金分别在8%和10%预应变下的恢复特性曲线
图6  Cu-13Al-4Ni-xY (x = 0、0.2、0.5)合金在3.5%NaCl溶液中的动电位极化曲线
AlloyEcorr (vs Ag/AgCl)icorrRpvcorr
VμA·cm-2kΩ·cm2mm·a-1
Cu-13Al-4Ni[25]-0.2641.472.290.017
Cu-13Al-4Ni-0.2Y-0.2712.251.400.026
Cu-13Al-4Ni-0.5Y-0.2723.031.560.035
表1  Cu-13Al-4Ni-xY合金在3.5%NaCl溶液中的腐蚀参数
1 Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys [J]. Mater. Mech. Eng., 2014, 38(1): 1
1 左舜贵, 金学军, 金明江. 高温形状记忆合金的研究进展 [J]. 机械工程材料, 2014, 38(1): 1
2 Zou Q, Dang S, Li Y G, et al. Research Progress of iron-based shape memory alloys: A review [J]. Mater. Rep., 2019, 33: 3955
2 邹 芹, 党 赏, 李艳国 等. Fe基形状记忆合金的研究进展 [J]. 材料导报, 2019, 33: 3955
3 Zhang Y, Zeng H Y, Zhou J P, et al. Characterization of laser beam offset welding TiNi alloy and 304 stainless steel with different joining modes [J]. Opt. Laser Technol., 2020, 131: 106372
doi: 10.1016/j.optlastec.2020.106372
4 Bellini C, Berto F, Di Cocco V, et al. A cyclic integrated microstructural-mechanical model for a shape memory alloy [J]. Int. J. Fatigue, 2021, 153: 106473
doi: 10.1016/j.ijfatigue.2021.106473
5 Karaca H E, Acar E, Tobe H, et al. NiTiHf-based shape memory alloys [J]. Mater. Sci. Technol., 2014, 30: 1530
doi: 10.1179/1743284714Y.0000000598
6 Firstov G S, Van Humbeeck J, Koval Y N. High-temperature shape memory alloys [J]. Mater. Sci. Eng., 2003, A378: 2
7 Firstov G S, Humbeeck J V, Koval Y N. High temperature shape memory alloys problems and prospects [J]. J. Intell. Mater. Syst. Struct., 2006, 17: 1041
doi: 10.1177/1045389X06063922
8 Hsieh S F, Chen S L, Lin H C, et al. The machining characteristics and shape recovery ability of Ti-Ni-X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining [J]. Int. J. Mach. Tool Manuf., 2009, 49: 509
doi: 10.1016/j.ijmachtools.2008.12.013
9 Shamsolhodaei A, Panton B, Michael A, et al. Laser alloying as an effective way to fabricate NiTiPt shape memory alloys [J]. Metall. Mater. Trans., 2021, 52A: 4368
10 Tong Y X, Chen F, Tian B, et al. Microstructure and martensitic transformation of Ti49Ni51 - x Hf x high temperature shape memory alloys [J]. Mater. Lett., 2009, 63: 1869
doi: 10.1016/j.matlet.2009.05.069
11 Zhang X, Sui J H, Cai W, et al. Deformation mechanism of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy [J]. Intermetallics, 2015, 67: 52
doi: 10.1016/j.intermet.2015.07.017
12 Shao P, Ding L P, Luo D B, et al. Structural, electronic and elastic properties of the shape memory alloy NbRu: First-principle investigations [J]. J. Alloys Compd., 2017, 695: 3024
doi: 10.1016/j.jallcom.2016.11.354
13 Fonda R W, Jones H N, Vandermeer R A. The shape memory effect in equiatomic TaRu and NbRu alloys [J]. Scr. Mater., 1998, 39: 1031
doi: 10.1016/S1359-6462(98)00303-0
14 Gastien R, Corbellani C E, Sade M, et al. Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals [J]. Acta Mater., 2005, 53: 1685
doi: 10.1016/j.actamat.2004.12.018
15 Zhu M, Ye X S, Li C H, et al. Preparation of single crystal CuAlNiBe SMA and its performances [J]. J. Alloys Compd., 2009, 478: 404
doi: 10.1016/j.jallcom.2008.11.051
16 Saud S N, Hamzah E, Abubakar T, et al. Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys [J]. J. Mater. Eng. Perform., 2014, 23: 3620
doi: 10.1007/s11665-014-1134-1
17 Sari U. Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys [J]. Int. J. Miner. Metall. Mater., 2010, 17: 192
doi: 10.1007/s12613-010-0212-0
18 Tong Y X, Li S Y, Zhang D T, et al. High strength and high electrical conductivity CuMg alloy prepared by cryorolling [J]. Trans. Nonferrous. Met. Soc., 2019, 29: 595
doi: 10.1016/S1003-6326(19)64968-X
19 Canbay C A, Karagoz Z. Effects of annealing temperature on thermomechanical properties of Cu-Al-Ni shape memory alloys [J]. Int. J. Thermophys., 2013, 34: 1325
doi: 10.1007/s10765-013-1486-z
20 Zare M, Ketabchi M. Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu-Al-Ni shape-memory alloys [J]. J. Therm. Anal. Calorim., 2017, 127: 2113
doi: 10.1007/s10973-016-5839-2
21 Zhang X, Zhang M, Cui T Y, et al. The enhancement of the mechanical properties and the shape memory effect for the Cu-13.0Al-4.0Ni alloy by boron addition [J]. J. Alloys Compd., 2019, 776: 326
doi: 10.1016/j.jallcom.2018.10.176
22 Deng Z H, Yin H Q, Zhang C, et al. Microstructure and mechanical properties of Cu-12Al-6Ni with Ti addition prepared by powder metallurgy [J]. Mater. Sci. Eng., 2021, A803: 140472
23 Chang S H, Liao B S, Gholami-Kermanshahi M. Effect of Co additions on the damping properties of Cu-Al-Ni shape memory alloys [J]. J. Alloys Compd., 2020, 847: 156560
doi: 10.1016/j.jallcom.2020.156560
24 Zhang X, Sui J H, Liu Q S, et al. Effects of Gd addition on the microstructure, mechanical properties and shape memory effect of polycrystalline Cu-Al-Ni shape memory alloy [J]. Mater. Lett., 2016, 180: 223
doi: 10.1016/j.matlet.2016.05.149
25 Zhang X, Cui T Y, Zhang X, et al. Effect of Nd addition on the microstructure, mechanical properties, shape memory effect and corrosion behaviour of Cu-Al-Ni high-temperature shape memory alloys [J]. J. Alloys Compd., 2021, 858: 157685
doi: 10.1016/j.jallcom.2020.157685
26 Stanciu S, Bujoreanu L G. Formation of stress-induced martensite in the presence of γ-phase, in a Cu-Al-Ni-Mn-Fe shape memory alloy [J]. Mater. Sci. Eng., 2008, A481-482: 494
27 Badawy W A, El-Rabiee M M, Helal N H, et al. Effect of nickel content on the electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solutions [J]. Electrochim. Acta, 2010, 56: 913
doi: 10.1016/j.electacta.2010.09.080
28 Lee J S, Wayman C M. Grain refinement of a Cu-Al-Ni shape memory alloy by Ti and Zr additions [J]. Trans. Jpn Inst. Met., 1986, 27: 584
doi: 10.2320/matertrans1960.27.584
29 Chang S H, Kuo C, Han J L. Selective leaching and surface properties of Cu-Al-Ni shape memory alloys [J]. Mater. Trans., 2018, 59: 787
doi: 10.2320/matertrans.M2017287
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.