金属学报, 2022, 58(8): 1065-1071 DOI: 10.11900/0412.1961.2021.00400

研究论文

Y元素对Cu-Al-Ni高温形状记忆合金性能的影响

张鑫1, 崔博2, 孙斌3, 赵旭4, 张欣,1, 刘庆锁1, 董治中,1

1.天津理工大学 材料科学与工程学院 天津 300384

2.中国工程物理研究院 原子核物理与化学研究所 绵阳 621900

3.哈尔滨工程大学 材料科学与化学工程学院 哈尔滨 150001

4.北京天宜上佳高新材料股份有限公司 北京 102400

Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy

ZHANG Xin1, CUI Bo2, SUN Bin3, ZHAO Xu4, ZHANG Xin,1, LIU Qingsuo1, DONG Zhizhong,1

1.School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

2.Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

3.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

4.Beijing Tianyi Shangjia High-Tech Materials Co. Ltd., Beijing 102400, China

通讯作者: 张 欣,zhangxin3510110@tjut.edu.cn,主要从事记忆合金材料研究董治中,zhizhong.dong@email.tjut.edu.cn,主要从事超临界耐热钢、海洋工程材料及记忆合金材料研究

收稿日期: 2021-09-16   修回日期: 2021-11-10  

基金资助: 国家自然科学基金项目(52071236)
天津市自然科学基金项目(18JCYBJC87000)

Corresponding authors: ZHANG Xin, associate professor, Tel: 18630878641, E-mail:zhangxin3510110@tjut.edu.cnDONG Zhizhong, professor, Tel: 13820371235, E-mail:zhizhong.dong@email.tjut.edu.cn

Received: 2021-09-16   Revised: 2021-11-10  

Fund supported: National Natural Science Foundation of China(52071236)
Natural Science Foundation of Tianjin(18JCYBJC87000)

作者简介 About authors

张 鑫,男,1997年生,硕士生

摘要

利用XRD、OM、SEM、TEM、电子万能力学试验机以及电化学工作站对Cu-13Al-4Ni-xY (x = 0.2、0.5,质量分数,%)高温形状记忆合金进行组织观察和性能测试。研究结果表明,加入Y元素后,Cu-13Al-4Ni-xY合金的室温组织主要为18R马氏体基体,以及具有六方结构的(Cu, Al, Ni)4Y第二相。随着Y元素含量的提高,Cu-13Al-4Ni-xY合金的力学性能大幅提升。当Y含量为0.5%时,压缩断裂应变与断裂强度从未添加Y时的10.5%和580 MPa分别提升到了19.3%和1185 MPa,且合金的断裂形式由沿晶断裂变为穿晶断裂。电化学实验结果表明,Y元素的添加使合金耐蚀性稍有下降。

关键词: 铜基形状记忆合金; 显微组织; 力学性能; 形状记忆效应

Abstract

Cu-Al-Ni alloys are not yet widely used due to issues related to their coarse grains, unacceptable plasticity, and poor thermal stability. Here, the physical and mechanical properties, as well as the corrosion behavior, of Cu-Al-Ni alloys doped with Y element (Cu-13Al-4Ni-xY (x = 0.2, 0.5, mass fraction, %)) were studied. XRD, OM, SEM, TEM, electronic universal testing machine, and electrochemical workstation were used to characterize the microstructures and measure the properties of the Cu-13Al-4Ni-xY alloys. The results showed that at room temperature, the microstructure of Cu-13Al-4Ni-xY alloys was mainly an 18R martensite matrix. The (Cu, Al, Ni)4Y second phase was characterized to have a hexagonal structure. The mechanical properties of the Cu-13Al-4Ni-xY alloys improved as the Y element content increased. For example, when the Y content was increased from 0% to 0.5%, the compressive fracture strain increased from 10.5% to 19.3% and the fracture strength increased from 580 to 1185 MPa. Additionally, the fracture type of the alloy changed from intergranular to transgranular with the addition of Y. Finally, the results from electrochemical experiments showed that the corrosion behavior of the alloys decreased slightly with the addition of Y.

Keywords: Cu-based shape memory alloy; microstructure; mechanical property; shape memory effect

PDF (2693KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071 DOI:10.11900/0412.1961.2021.00400

ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. Acta Metallurgica Sinica, 2022, 58(8): 1065-1071 DOI:10.11900/0412.1961.2021.00400

形状记忆合金具有热弹性马氏体相变,展现出独特的形状记忆效应与非线性超弹性,因此被广泛应用在能源化工、生物医学、航空航天和日常生活等领域[1~3]。利用形状记忆合金制成的连接紧固件和驱动元件,具有优于绝大多数材料的智能性和便捷性。目前已应用的形状记忆合金中,Ti-Ni合金所占比例最大,这是因为它具有记忆合金中最好的综合性能[4]。然而,Ti-Ni合金的马氏体相变温度通常不高于100℃,无法在诸如航空发动机、核反应堆等高温服役环境下使用,因而发展高温形状记忆合金成为必然[5~7]

目前已发展的高温形状记忆合金,如Ti-Ni-X (X = Pd、Pt、Au、Hf、Zr)、Ti-Ta、Ni-Mn-Ga、TaRu和NbRu等[8~13],均因成本较高而无法大规模应用。Cu-Al-Ni高温形状记忆合金成本低廉,具有优良的单晶形状记忆效应和超弹性,成为高温形状记忆合金实用化的优秀候选材料[14,15]。Cu-Al-Ni合金最大的应用障碍,在于该合金的晶粒粗大,造成晶界偏析等缺陷,使晶界脆化并易发生沿晶断裂,表现出严重的多晶脆性[16~21]。研究者[15,22,23]主要通过粉末冶金、定向凝固或者合金化的方法来改善多晶Cu-Al-Ni合金的力学性能,其中添加第四组元合金化的方法最为简单有效。

在众多合金化元素中,稀土类元素(如Gd、Nd等)对多晶Cu-Al-Ni合金力学性能的影响独特,合金化的过程中可以显著细化晶粒,大幅提高合金的力学性能和形状记忆效应[24,25]。鉴于此,本工作选择一种尚未研究过的稀土元素Y作为第四组元,采用合金化的方法制备多晶Cu-Al-Ni-Y高温形状记忆合金,并系统研究了该合金的组织结构、力学性能、形状记忆效应以及耐蚀性,以期达到细化Cu-Al-Ni高温形状记忆合金的晶粒,改善其力学能的目的,并在室温下对其耐蚀性进行了简单的研究,以了解其在非工作条件下的状态。

1 实验方法

实验用合金的名义成分为Cu-13Al-4Ni-xY (x = 0.2、0.5,质量分数,%)。选择纯度为99.99%的4种原材料按比例配好,使用非自耗真空电弧炉进行熔炼,为保证材料熔炼均匀,熔炼过程中翻转材料8次,得到钮扣状铸锭,然后进行真空封管,在850℃均匀化处理12 h,冰水淬火。

热处理后将材料切割出8 mm × 8 mm × 2 mm的片状样品,利用D/max-rB X射线衍射仪(XRD)进行分析,扫描速率为4°/min,范围为30°~80°。相同样品经打磨、抛光、腐蚀后,利用Axioscope A1金相显微镜(OM)和MERLIN Compact场发射扫描电子显微镜(SEM)进行显微组织观察。OM和SEM样品使用的腐蚀液为100 mL蒸馏水 + 30 mL HCl + 10 g FeCl3。利用配有能谱 (EDS)分析附件的Tecnai G2 F20场发射透射电子显微镜(TEM)进行成分与结构分析,样品在2.5 g FeCl3·6H2O + 10 mL HCl + 48 mL CH3OH组成的溶液中进行电解双喷减薄,减薄温度-25℃。利用EXSTAR6000 TG/DTA6300热重差热综合热分析仪(DTA)测量马氏体相变温度,升温和降温速率均为10℃/min。结果表明,Cu-13Al-4Ni-0.2Y合金和Cu-13Al-4Ni-0.5Y合金的马氏体开始转变温度(Ms)分别为135和174℃。

利用压缩法在GNT50电子万能试验机上测试试样的力学性能和形状记忆效应,样品为直径3 mm、长5 mm的圆棒,横梁移动速率为0.2 mm/min。形状记忆效应的计算方法为:材料原长L0,预加载后长度压缩至L1,卸载后由于回弹,长度回复到L2,之后加热到马氏体逆相变温度之上,发生形状回复,长度为L3;则预应变ε = (L0 - L1) / L0 × 100%,形状记忆效应SME = (L3L2) / L0 × 100%。

利用Autolab电化学工作站进行电化学分析。电化学测量采用三电极体系,样品为工作电极,Pt片为对电极,Ag/AgCl电极为参比电极(在25℃下,相对于氢标准电极的电极电位为+ 0.210 V),测试溶液为3.5%NaCl溶液。对用2000号砂纸打磨过的样品进行5 min的阴极除膜过程,然后进行30 min的开路电位(OCP)测试,最后进行动电位极化测试,测量范围为相对于开路电位± 0.5 V (vs Ag/AgCl),步阶为1 mV,扫描速率为0.5 mV/s。

2 实验结果与分析

图1分别给出了Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的OM和SEM像。如图1a和b所示,Cu-13Al-4Ni-xY合金的晶粒尺寸为100~200 μm,远小于Cu-13Al-4Ni合金的晶粒尺寸(1~3 mm)[24]。已知室温下Cu-13Al-4Ni合金的组织包含板条状2H马氏体和人字形18R马氏体[24],通过XRD结果(图2)可以看出,Y元素添加后,Cu-13Al-4Ni-xY合金的室温组织由18R马氏体和类似六方结构Cu4Y的第二相组成。从SEM像(图1c和d)可见,Cu-13Al-4Ni-xY合金的马氏体组织属于典型的18R马氏体,第二相分散在18R马氏体中,而2H马氏体消失。

图1

图1   Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的OM和SEM像

Fig.1   OM (a, b) and SEM (c, d) images of Cu-13Al-4Ni-xY alloys with x = 0.2 (a, c) and x = 0.5 (b, d)


图2

图2   Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的XRD谱

Fig.2   XRD spectra of Cu-13Al-4Ni-xY (x = 0.2 and 0.5) alloys


XRD结果表明,Cu-13Al-4Ni-0.2Y合金与Cu-13Al-4Ni-0.5Y合金的相组成基本一致,且Cu-13Al-4Ni-0.5Y合金中的第二相颗粒较多(如图1中箭头所示),因此对Cu-13Al-4Ni-0.5Y合金进行TEM观察,以进一步确定Cu-13Al-4Ni-xY合金的相组成,结果如图3所示。由图3a~c可知,类似六方Cu4Y的第二相粒子嵌在18R马氏体中,尺寸约为500 nm。高分辨图像(图3d)显示,在(1 1¯4)晶面上,第二相的面间距为0.29 nm。第二相与基体之间没有明显位向关系。EDS面扫描图(图3e~h)证明第二相为富Y相。Cu、Al、Ni和Y在第二相中的原子分数分别为66.51%、7.51%、2.87%和23.09%,(Cu + Al + Ni)和Y的原子比接近4∶1。因此,第二相可以认为是六方结构的(Cu, Al, Ni)4Y相。

图3

图3   Cu-13Al-4Ni-0.5Y合金的TEM明场像、SAED花样、HRTEM像及第二相区域EDS元素面扫描图

Fig.3   TEM bright field image (a), the corresponding selected area electron diffraction (SAED) patterns of 18R martensite (b) and second phase (c) in the Cu-13Al-4Ni-0.5Y alloy; high resolution transmission electron microscope (HRTEM) image of area d in Fig.3a (Inset shows the fast Fourier transform) (d); EDS element maps of Cu (e), Al (f), Ni (g), and Y (h) for the second phase (d—interplanar spacing)


图4a为Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的压缩应力-应变曲线。可见,当x = 0.2时,压缩断裂强度为978 MPa,应变为15.6%;当x = 0.5时,压缩断裂强度和应变分别提高到1185 MPa和19.3%,远高于Cu-13Al-4Ni合金(580 MPa和10.5%)[24]。在多晶Cu-Al-Ni合金发生形变时,合金中的晶粒位向发生变化,为了保证界面上的应变连续性,在晶界处会发生应力集中,因此Cu-13Al-4Ni合金的断裂形式是沿晶断裂[21]。由于晶粒细化,Y元素大大提高了合金的强度和塑性。此外,第二相在基体中随机分布,导致位错和应力在第二相附近积累,所以Cu-13Al-4Ni-xY合金的断裂形式由未掺杂合金的沿晶断裂变为穿晶断裂,如图4b和c所示。基体中脆性2H马氏体的消失也是力学性能提高的另一个重要原因[26]

图4

图4   Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的压缩应力-应变曲线及断口形貌

Fig.4   Compressive stress-strain curves (a), and fracture morphologies of the Cu-13Al-4Ni-xY alloys with x = 0.2 (b) and x = 0.5 (c)


图5为Cu-13Al-4Ni-xY (x = 0.2、0.5)合金的应变恢复特性曲线。当预应变为8%时,x = 0.2和0.5合金的形状记忆效应分别为4.8%和4.2%,远高于Cu-13Al-4Ni合金的2.6%[24]。当预应变增加到10%时,x = 0.2合金的形状记忆效应为5.5%,x = 0.5合金的形状记忆效应为5.1%。Y掺杂提高了Cu-13Al-4Ni-xY合金的力学性能,增强了其抵抗不可逆变形的能力。因此,Cu-13Al-4Ni-xY合金的形状记忆效应得到了相应的改善。Cu-13Al-4Ni-0.5Y合金的可逆应变低于Cu-13Al-4Ni-0.2Y合金的原因在于,随着Y含量的增加,合金基体中的(Cu, Al, Ni)4Y相含量随之增多,损害了合金的形状记忆效应。

图5

图5   Cu-13Al-4Ni-xY (x = 0.2、0.5)合金分别在8%和10%预应变下的恢复特性曲线

Fig.5   Recovery characteristic curves of the Cu-13Al-4Ni-xY alloys with x = 0.2 (a) and x = 0.5 (b) under pre-strains of 8% and 10%, respectively (The arrow lines represent the recovery strain after heating to 350oC for 1 min. SME—shape memory effect)


图6为Cu-13Al-4Ni-xY (x = 0、0.2、0.5)合金的电势极化曲线,计算得到的腐蚀参数如表1所示。极化曲线分为阴极支路和阳极支路。阴极支路表示氧还原反应,中性溶液中的反应公式为[27]

图6

图6   Cu-13Al-4Ni-xY (x = 0、0.2、0.5)合金在3.5%NaCl溶液中的动电位极化曲线

Fig.6   Potential polarization curves for the Cu-13Al-4Ni-xY (x = 0, 0.2, 0.5) alloys in the 3.5%NaCl solution


表1   Cu-13Al-4Ni-xY合金在3.5%NaCl溶液中的腐蚀参数

Table 1  Corrosion parameters of Cu-13Al-4Ni-xY alloys in 3.5%NaCl solution

AlloyEcorr (vs Ag/AgCl)icorrRpvcorr
VμA·cm-2kΩ·cm2mm·a-1
Cu-13Al-4Ni[25]-0.2641.472.290.017
Cu-13Al-4Ni-0.2Y-0.2712.251.400.026
Cu-13Al-4Ni-0.5Y-0.2723.031.560.035

Note:Ecorr—corrosion potential, icorr—corrosion current density, Rp—polarization resistance, vcorr—corrosion rate

新窗口打开| 下载CSV


1/2(a+b+c)O2+(a+b+c)H2O+
2(a+b+c)e-(a+b+c)OH-
(1)

式中,a、b、c分别为Cu2+、Al3+、Ni2+的系数。

阳极支路表示Cu的溶解。首先Cu溶解为Cu+,然后Cu+被氧化为Cu2+[28]

CuCu++e-
(2)
Cu+Cu2++e-
(3)

Cu-Al-Ni合金的总溶解反应表达式为:

(Cu+Al+Ni)+1/2(a+b+c)O2+
(a+b+c)H+aCu2++bAl3++cNi2++
(a+b+c)H2O
(4)

众所周知,材料表面形成的氧化保护层可以保护金属不受腐蚀。由图6可知,随着施加电压的增加,阳极支路出现3个电流峰值。Chang等[29]发现Ni2+的选择性溶解浓度是Cu2+和Al3+的3倍。所以第一次电流密度降低是由于Ni2+的选择性溶解造成的。Al2O3的稳定性几乎是Cu2O[20]的11倍。因此,电流密度第二次下降的现象可能是Cu+/Cu2+的溶解造成的,第三次是Al3+的溶解造成的。在图6表1中,添加Y后,电极电位向负方向移动。同时,随着Y含量的增加,腐蚀电流密度升高,合金的腐蚀速率加快,表明Y元素对Cu-13Al-4Ni合金的耐蚀性稍有损伤。

3 结论

(1) Y元素掺杂后,Cu-13Al-4Ni合金从由2H和18R马氏体组成变为单一的18R马氏体,并且其中伴随着晶粒细化以及六方(Cu, Al, Ni)4Y相的出现。

(2) 合金的力学性能大幅提升,Cu-13Al-4Ni-0.5Y合金的压缩断裂应变和压缩断裂应力分别达到了19.3%和1185 MPa。断裂形式也从沿晶断裂变为穿晶断裂。力学性能的提高促进了形状记忆效应的改善,Cu-13Al-4Ni-0.2Y合金在预应变10%加热后,可得到5.5%的可逆应变。Cu-13Al-4Ni-xY合金的耐蚀性相较于Cu-13Al-4Ni合金稍有下降。

参考文献

Zuo S G, Jin X J, Jin M J.

Research progress in high temperature shape memory alloys

[J]. Mater. Mech. Eng., 2014, 38(1): 1

[本文引用: 1]

左舜贵, 金学军, 金明江.

高温形状记忆合金的研究进展

[J]. 机械工程材料, 2014, 38(1): 1

[本文引用: 1]

Zou Q, Dang S, Li Y G, et al.

Research Progress of iron-based shape memory alloys: A review

[J]. Mater. Rep., 2019, 33: 3955

邹 芹, 党 赏, 李艳国 .

Fe基形状记忆合金的研究进展

[J]. 材料导报, 2019, 33: 3955

Zhang Y, Zeng H Y, Zhou J P, et al.

Characterization of laser beam offset welding TiNi alloy and 304 stainless steel with different joining modes

[J]. Opt. Laser Technol., 2020, 131: 106372

DOI      URL     [本文引用: 1]

Bellini C, Berto F, Di Cocco V, et al.

A cyclic integrated microstructural-mechanical model for a shape memory alloy

[J]. Int. J. Fatigue, 2021, 153: 106473

DOI      URL     [本文引用: 1]

Karaca H E, Acar E, Tobe H, et al.

NiTiHf-based shape memory alloys

[J]. Mater. Sci. Technol., 2014, 30: 1530

DOI      URL     [本文引用: 1]

Firstov G S, Van Humbeeck J, Koval Y N.

High-temperature shape memory alloys

[J]. Mater. Sci. Eng., 2003, A378: 2

Firstov G S, Humbeeck J V, Koval Y N.

High temperature shape memory alloys problems and prospects

[J]. J. Intell. Mater. Syst. Struct., 2006, 17: 1041

DOI      URL     [本文引用: 1]

Hsieh S F, Chen S L, Lin H C, et al.

The machining characteristics and shape recovery ability of Ti-Ni-X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining

[J]. Int. J. Mach. Tool Manuf., 2009, 49: 509

DOI      URL     [本文引用: 1]

Shamsolhodaei A, Panton B, Michael A, et al.

Laser alloying as an effective way to fabricate NiTiPt shape memory alloys

[J]. Metall. Mater. Trans., 2021, 52A: 4368

Tong Y X, Chen F, Tian B, et al.

Microstructure and martensitic transformation of Ti49Ni51 - x Hf x high temperature shape memory alloys

[J]. Mater. Lett., 2009, 63: 1869

DOI      URL    

Zhang X, Sui J H, Cai W, et al.

Deformation mechanism of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy

[J]. Intermetallics, 2015, 67: 52

DOI      URL    

Shao P, Ding L P, Luo D B, et al.

Structural, electronic and elastic properties of the shape memory alloy NbRu: First-principle investigations

[J]. J. Alloys Compd., 2017, 695: 3024

DOI      URL    

Fonda R W, Jones H N, Vandermeer R A.

The shape memory effect in equiatomic TaRu and NbRu alloys

[J]. Scr. Mater., 1998, 39: 1031

DOI      URL     [本文引用: 1]

Gastien R, Corbellani C E, Sade M, et al.

Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals

[J]. Acta Mater., 2005, 53: 1685

DOI      URL     [本文引用: 1]

Zhu M, Ye X S, Li C H, et al.

Preparation of single crystal CuAlNiBe SMA and its performances

[J]. J. Alloys Compd., 2009, 478: 404

DOI      URL     [本文引用: 2]

Saud S N, Hamzah E, Abubakar T, et al.

Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu-Al-Ni shape memory alloys

[J]. J. Mater. Eng. Perform., 2014, 23: 3620

DOI      URL     [本文引用: 1]

Sari U.

Influences of 2.5wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys

[J]. Int. J. Miner. Metall. Mater., 2010, 17: 192

DOI      URL    

Tong Y X, Li S Y, Zhang D T, et al.

High strength and high electrical conductivity CuMg alloy prepared by cryorolling

[J]. Trans. Nonferrous. Met. Soc., 2019, 29: 595

DOI      URL    

Canbay C A, Karagoz Z.

Effects of annealing temperature on thermomechanical properties of Cu-Al-Ni shape memory alloys

[J]. Int. J. Thermophys., 2013, 34: 1325

DOI      URL    

Zare M, Ketabchi M.

Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu-Al-Ni shape-memory alloys

[J]. J. Therm. Anal. Calorim., 2017, 127: 2113

DOI      URL     [本文引用: 1]

Zhang X, Zhang M, Cui T Y, et al.

The enhancement of the mechanical properties and the shape memory effect for the Cu-13.0Al-4.0Ni alloy by boron addition

[J]. J. Alloys Compd., 2019, 776: 326

DOI      URL     [本文引用: 2]

Deng Z H, Yin H Q, Zhang C, et al.

Microstructure and mechanical properties of Cu-12Al-6Ni with Ti addition prepared by powder metallurgy

[J]. Mater. Sci. Eng., 2021, A803: 140472

[本文引用: 1]

Chang S H, Liao B S, Gholami-Kermanshahi M.

Effect of Co additions on the damping properties of Cu-Al-Ni shape memory alloys

[J]. J. Alloys Compd., 2020, 847: 156560

DOI      URL     [本文引用: 1]

Zhang X, Sui J H, Liu Q S, et al.

Effects of Gd addition on the microstructure, mechanical properties and shape memory effect of polycrystalline Cu-Al-Ni shape memory alloy

[J]. Mater. Lett., 2016, 180: 223

DOI      URL     [本文引用: 5]

Zhang X, Cui T Y, Zhang X, et al.

Effect of Nd addition on the microstructure, mechanical properties, shape memory effect and corrosion behaviour of Cu-Al-Ni high-temperature shape memory alloys

[J]. J. Alloys Compd., 2021, 858: 157685

DOI      URL     [本文引用: 2]

Stanciu S, Bujoreanu L G.

Formation of stress-induced martensite in the presence of γ-phase, in a Cu-Al-Ni-Mn-Fe shape memory alloy

[J]. Mater. Sci. Eng., 2008, A481-482: 494

[本文引用: 1]

Badawy W A, El-Rabiee M M, Helal N H, et al.

Effect of nickel content on the electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solutions

[J]. Electrochim. Acta, 2010, 56: 913

DOI      URL     [本文引用: 1]

Lee J S, Wayman C M.

Grain refinement of a Cu-Al-Ni shape memory alloy by Ti and Zr additions

[J]. Trans. Jpn Inst. Met., 1986, 27: 584

DOI      URL     [本文引用: 1]

Chang S H, Kuo C, Han J L.

Selective leaching and surface properties of Cu-Al-Ni shape memory alloys

[J]. Mater. Trans., 2018, 59: 787

DOI      URL     [本文引用: 1]

/