|
|
尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响 |
侯娟1,2( ), 代斌斌2, 闵师领2, 刘慧2, 蒋梦蕾2, 杨帆2 |
1中广核工程有限公司 核电安全监控技术与装备国家重点实验室 深圳 518172 2上海理工大学 材料与化学学院 上海 200082 |
|
Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting |
HOU Juan1,2( ), DAI Binbin2, MIN Shiling2, LIU Hui2, JIANG Menglei2, YANG Fan2 |
1State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, China 2Academy of Materials and Chemistry, University of Shanghai Science and Technology, Shanghai 200082, China |
引用本文:
侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
Juan HOU,
Binbin DAI,
Shiling MIN,
Hui LIU,
Menglei JIANG,
Fan YANG.
Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. Acta Metall Sin, 2023, 59(5): 623-635.
1 |
Das S, Wohlert M, Beaman J J, et al. Processing of titanium net shapes by SLS/HIP[J]. Mater. Des., 1999, 20: 115
doi: 10.1016/S0261-3069(99)00017-5
|
2 |
Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. Int. J. Fatigue, 2013, 48: 300
doi: 10.1016/j.ijfatigue.2012.11.011
|
3 |
Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Mater. Sci. Eng., 2017, A701: 344
|
4 |
Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
|
5 |
Witte F. The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
doi: 10.1016/j.actbio.2010.02.028
pmid: 20172057
|
6 |
Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy[J]. J. Alloys Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
|
7 |
Anderson S, Baca G, O'Connor M. NEET-AMM final technical report on laser direct manufacturing (LDM) for nuclear power components[R]. United States: n. p., 2015. doi:10.2172/1233481
|
8 |
Li P F, Gong Y D, Xu Y C, et al. Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties[J]. Arch. Civ. Mech. Eng., 2019, 19: 820
doi: 10.1016/j.acme.2019.03.002
|
9 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
10 |
Trevisan F, Calignano F, Aversa A, et al. Additive manufacturing of titanium alloys in the biomedical field: Processes, properties and applications[J]. J. Appl. Biomater. Funct. Mater., 2018, 16: 57
|
11 |
Hou J, Chen W, Chen Z E, et al. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel[J]. J. Mater. Sci. Technol., 2020, 48: 63
doi: 10.1016/j.jmst.2020.01.011
|
12 |
Cordero Z C, Meyer III H M, Nandwana P, et al. Powder bed charging during electron-beam additive manufacturing[J]. Acta Mater., 2017, 124: 437
doi: 10.1016/j.actamat.2016.11.012
|
13 |
Guan Q F, Ji L, Cai J, et al. Surface microstructure and properties of 3Cr13 martensitic stainless steel after high current pulsed electron beam bombardment[J]. J. Jilin Univ. (Eng. Technol. Ed.), 2014, 44: 712
|
13 |
关庆丰, 季 乐, 蔡 杰 等. 强流脉冲电子束轰击作用下3Cr13不锈钢的微观结构及性能[J]. 吉林大学学报(工学版), 2014, 44: 712
|
14 |
El Cheikh H, Courant B, Branchu S, et al. Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures[J]. Opt. Lasers Eng., 2012, 50: 1779
doi: 10.1016/j.optlaseng.2012.07.002
|
15 |
Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting[J]. Mater. Character., 2013, 84: 153
doi: 10.1016/j.matchar.2013.07.012
|
16 |
Wang D, Yang Y Q, Su X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. Int. J. Adv. Manuf. Technol., 2012, 58: 1189
doi: 10.1007/s00170-011-3443-y
|
17 |
Gu H, Wei C, Li L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting[J]. Int. J. Heat Mass Transf., 2020, 151: 119458
doi: 10.1016/j.ijheatmasstransfer.2020.119458
|
18 |
Hussein A, Hao L, Yan C Z, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Mater. Des., 2013, 52: 638
doi: 10.1016/j.matdes.2013.05.070
|
19 |
Du L, Gu D D, Dai D H, et al. Relation of thermal behavior and microstructure evolution during multi-track laser melting deposition of Ni-based material[J]. Opt. Laser Technol., 2018, 108: 207
doi: 10.1016/j.optlastec.2018.06.042
|
20 |
Tang X, Zhang S, Zhang C H, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM[J]. Mater. Character., 2020, 170: 110718
doi: 10.1016/j.matchar.2020.110718
|
21 |
Song Y N, Sun Q D, Guo K, et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Mater. Sci. Eng., 2020, A793: 139879
|
22 |
Rajeshkumar R, Niranjani V L, Devakumaran K, et al. Fusion boundary microstructure evolution and mechanical properties of cold metal transfer welded dissimilar A5754 and A5083 joint[J]. Mater. Lett., 2021, 284: 128877
doi: 10.1016/j.matlet.2020.128877
|
23 |
Kim C K, Kim J H, Hong H U, et al. Behavior of weld pool convection and columnar-to-equiaxed grain transition in gas tungsten arc welds of ferritic stainless steels with different aluminum contents[J]. J. Mater. Process. Technol., 2021, 289: 116946
doi: 10.1016/j.jmatprotec.2020.116946
|
24 |
Chen W, Hou J, Huang A J. Effect of heat treatment on microstructure and mechanical property of 304L stainless steel prepared by selective laser melting[J]. Trans. Mater. Heat Treat., 2020, 41(3): 103
|
24 |
陈 伟, 侯 娟, 黄爱军. 热处理对选区激光熔化304L不锈钢组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(3): 103
|
25 |
Geng S N, Jiang P, Shao X Y, et al. Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet[J]. J. Mater. Sci. Technol., 2020, 46: 50
doi: 10.1016/j.jmst.2019.10.027
|
26 |
Leicht A, Klement U, Hryha E. Effect of build geometry on the microstructural development of 316L parts produced by additive manufacturing[J]. Mater. Character., 2018, 143: 137
doi: 10.1016/j.matchar.2018.04.040
|
27 |
Chong Y, Deng G Y, Gao S, et al. Yielding nature and Hall-Petch relationships in Ti-6Al-4V alloy with fully equiaxed and bimodal microstructures[J]. Scr. Mater., 2019, 172: 77
doi: 10.1016/j.scriptamat.2019.07.015
|
28 |
Kang B, Lee J, Ryu H J, et al. Microstructure, mechanical property and Hall-Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process[J]. J. Alloys Compd., 2018, 767: 1012
doi: 10.1016/j.jallcom.2018.07.145
|
29 |
Zhang K, Li Z D, Sun F L, et al. Effect of cooling rate on microstructure evolution and mechanical properties of Ti-V-Mo complex microalloyed steel[J]. Acta Metall. Sin., 2018, 54: 31
doi: 10.11900/0412.1961.2017.00202
|
29 |
张 可, 李昭东, 隋凤利 等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54: 31
|
30 |
Wang X, Liu R C, Cao R X, et al. Effect of cooling rate on boride and room temperature tensile properties of β-solidifying γ-TiAl alloys[J]. Acta Metall. Sin., 2020, 56: 203
|
30 |
王 希, 刘仁慈, 曹如心 等. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56: 203
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|