|
|
Nb-Si基超高温合金及其定向凝固工艺的研究进展 |
陈瑞润1,2( ), 陈德志1, 王琪1( ), 王墅1, 周哲丞1, 丁宏升1,2, 傅恒志1,2 |
1.哈尔滨工业大学 金属精密热加工国家级重点实验室 哈尔滨 150001 2.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001 |
|
Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology |
CHEN Ruirun1,2( ), CHEN Dezhi1, WANG Qi1( ), WANG Shu1, ZHOU Zhecheng1, DING Hongsheng1,2, FU Hengzhi1,2 |
1.National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China 2.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
Ruirun CHEN,
Dezhi CHEN,
Qi WANG,
Shu WANG,
Zhecheng ZHOU,
Hongsheng DING,
Hengzhi FU.
Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. Acta Metall Sin, 2021, 57(9): 1141-1154.
1 |
Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
|
1 |
张国庆, 张义文, 郑 亮等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
|
2 |
Li Z, Zhang G Q, Zhang Y F, et al. Structures and properties of argon-gas atomized superalloy powders [J]. Chin. J. Nonferrous Met., 2005, 15(spec. issue 2): 335
|
2 |
李 周, 张国庆, 张翼飞等. 氩气雾化高温合金粉末的制备及其组织与性能 [J]. 中国有色金属学报, 2005, 15(专辑2): 335
|
3 |
Yu Z Y, Yue Z F, Cao W, et al. A review of rafting in nickel-based single crystal superalloys [J]. Solid State Phenom., 2017, 263: 41
|
4 |
Ma X L, Hu X B. High-resolution transmission electron microscopic study of various borides precipitated in superalloys [J]. Acta Metall. Sin., 2018, 54: 1503
|
4 |
马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究 [J]. 金属学报, 2018, 54: 1503
|
5 |
Zhao J C, Westbrook J H. Ultrahigh-temperature materials for jet engines [J]. MRS Bull., 2003, 28: 622
|
6 |
Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
|
7 |
Li Y F, Li C, Wu J, et al. Microstructural feature and evolution of rapidly solidified Ni3Al-based superalloys [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 764
|
8 |
Wang W, Geng R, Wang X P, et al. Construction and application of aeroengine strength design system [J]. Aeroengine, 2020, 46(1): 97
|
8 |
王 威, 耿 瑞, 王相平等. 航空发动机强度设计系统建设与应用 [J]. 航空发动机, 2020, 46(1): 97
|
9 |
Zhang J, Jie Z Q, Huang T W, et al. Research and development of equiaxed grain solidification and forming technology for nickel-based cast superalloys [J]. Acta Metall. Sin., 2019, 55: 1145
|
9 |
张 军, 介子奇, 黄太文等. 镍基铸造高温合金等轴晶凝固成形技术的研究和进展 [J]. 金属学报, 2019, 55: 1145
|
10 |
Li H, Du W, Liu Y. Molecular dynamics study of tension process of Ni-based superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 741
|
11 |
Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys [J]. Acta Metall. Sin., 2019, 56: 1
|
11 |
刘兴军, 陈悦超, 卢 勇等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2019, 56: 1
|
12 |
Gong S K, Shang Y, Zhang J, et al. Application and research of typical intermetallics-based high temperature structural materials in China [J]. Acta Metall. Sin., 2019, 55: 1067
|
12 |
宫声凯, 尚 勇, 张 继等. 我国典型金属间化合物基高温结构材料的研究进展与应用 [J]. 金属学报, 2019, 55: 1067
|
13 |
Ren X Y, Ren H S, Kang Y W, et al. Solid-state diffusion bonding of nbss/Nb5Si3 composite using Ni/Al and Ti/Al nanolayers [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1142
|
14 |
Bewlay B P, Jackson M R, Subramanian P R. Processing high-temperature refractory-metal silicide in-situ composites [J]. JOM, 1999, 51(4): 32
|
15 |
Mendiratta M G, Dimiduk D M. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system [J]. Scr. Metall. Mater., 1991, 25: 237
|
16 |
Ding X, Guo X P. Developments in an advanced niobium-niobium silicide based in-situ composite [J]. Mater. Rev., 2003, 17(11): 60
|
16 |
丁 旭, 郭喜平. 新型铌-硅基共晶自生复合材料的研究进展 [J]. 材料导报, 2003, 17(11): 60
|
17 |
Cheng H H, Guo X P. Research progress in the directional solidification and thermodynamic modeling of the constitute phases of Nb-Si based multi-component ultrahigh temperature alloys [J]. Mater. Rev., 2011, 25(17): 110
|
17 |
程欢欢, 郭喜平. 铌-硅基超高温合金定向凝固及相组成的热力学研究进展 [J]. 材料导报, 2011, 25(17): 110
|
18 |
Guo Y L, Jia L N, Kong B, et al. Energy density dependence of bonding characteristics of selective laser-melted Nb-Si-based alloy on titanium substrate [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 477
|
19 |
Drawin S, Boivin D, Petit P. Microstructural properties of Nb-Si alloys investigated using EBSD at large and small scale [J]. Metall. Mater. Trans., 2005, 36A: 497
|
20 |
Yi D Q, Du R X, Cao Y. Physical metallurgy of M5Si3-type silicides [J]. Acta Metall. Sin., 2001, 37: 1121
|
20 |
易丹青, 杜若昕, 曹 昱. M5Si3型硅化物的研究及相关的物理冶金学问题 [J]. 金属学报, 2001, 37: 1121
|
21 |
Zhao J C, Jackson M R, Peluso L A. Mapping of the Nb-Ti-Si phase diagram using diffusion multiples [J]. Mater. Sci. Eng., 2004, A372: 21
|
22 |
Schlesinger M E, Okamoto H, Gokhale A B, et al. The Nb-Si (niobium-silicon) system [J]. J. Phase Equilib., 1993, 14: 502
|
23 |
Liu W, Sha J B. Effect of Nb and Nb5Si3 powder size on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering [J]. Metall. Mater. Trans., 2014, 45A: 4316
|
24 |
Wang H Y, An Y Q, Li C Y, et al. Research progress of Ni-based superalloys [J]. Mater. Rev., 2011, 25(spec. issue 18): 482
|
24 |
王会阳, 安云岐, 李承宇等. 镍基高温合金材料的研究进展 [J]. 材料导报, 2011, 25(专辑18): 482
|
25 |
Chen D Z. Microstructure and mechanical propeties of Nb-Si based multicomponent alloys [D]. Harbin: Harbin Institute of Technology, 2019
|
25 |
陈德志. 多元Nb-Si基合金显微组织及力学性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
26 |
Bewlay B P, Jackson M R, Lipsitt H A. The Nb-Ti-Si ternary phase diagram: Evaluation of liquid-solid phase equilibria in Nb-and Ti-rich alloys [J]. J. Phase Equilib., 1997, 18: 264
|
27 |
Chan K S. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites [J]. Mater. Sci. Eng., 2002, A329-331: 513
|
28 |
Liu W, Xiong H P, Li N, et al. Microstructure characteristics and mechanical properties of Nb-17Si-23Ti ternary alloys fabricated by in situ reaction laser melting deposition [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 362
|
29 |
Li Z, Peng L M. Microstructural and mechanical characterization of Nb-based in situ composites from Nb-Si-Ti ternary system [J]. Acta Mater., 2007, 55: 6573
|
30 |
Yang Y, Bewlay B P, Chang Y A. Liquid-solid phase equilibria in metal-rich Nb-Ti-Hf-Si alloys [J]. J. Phase Equilib. Diffus., 2007, 28: 107
|
31 |
Bewlay B P, Jackson M R, Reeder W J, et al. Microstructures and properties of ds in-situ composites of Nb-Ti-Si alloys [J]. MRS Online Proc. Lib., 1994, 364: 943
|
32 |
Wang F X, Luo L S, Xu Y J, et al. Effects of alloying on the microstructures and mechanical property of Nb-Mo-Si based in situ composites [J]. Intermetallics, 2017, 88: 6
|
33 |
Fang X, Guo X P, Qiao Y Q. Effect of Ti addition on microstructure and crystalline orientations of directionally solidified Nb-Si based alloys [J]. Intermetallics, 2020, 122: 106798
|
34 |
Miura S, Ohkubo K, Mohri T. Microstructural control of Nb-Si alloy for large Nb grain formation through eutectic and eutectoid reactions [J]. Intermetallics, 2007, 15: 783
|
35 |
Kim W Y, Tanaka H, Kasama A, et al. Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites [J]. Intermetallics, 2001, 9: 827
|
36 |
Sankar M, Phanikumar G, Prasad V V S. Effect of alloying additions and heat treatment on the microstructure evolution of Nb-16Si alloy [J]. Mater. Today: Proc., 2016, 3: 3094
|
37 |
Tian Y X, Guo J T, Sheng L Y, et al. Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys [J]. Intermetallics, 2008, 16: 807
|
38 |
Sankar M, Phanikumar G, Prasad V V S. Effect of Zr addition on the mechanical properties of Nb-Si based alloys [J]. Mater. Sci. Eng., 2019, A754: 224
|
39 |
Sankar M, Phanikumar G, Singh V, et al. Effect of Zr additions on microstructure evolution and phase formation of Nb-Si based ultrahigh temperature alloys [J]. Intermetallics, 2018, 101: 123
|
40 |
Qiao Y Q, Guo X P, Zeng Y X. Study of the effects of Zr addition on the microstructure and properties of Nb-Ti-Si based ultrahigh temperature alloys [J]. Intermetallics, 2017, 88: 19
|
41 |
Qu S Y, Han Y F, Song L G. Effects of alloying elements on phase stability in Nb-Si system intermetallics materials [J]. Intermetallics, 2007, 15: 810
|
42 |
Sha J, Yang C, Liu J. Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr [J]. Scr. Mater., 2010, 62: 859
|
43 |
Chan K S, Davidson D L. Improving the fracture toughness of constituent phases and Nb-based in-situ composites by a computational alloy design approach [J]. Metall. Mater. Trans., 2003, 34A: 1833
|
44 |
Guo B H, Guo X P. Recent progress on room temperature fracture toughness of Nb-Ti-Cr-Si based ultrahigh temperature alloy [J]. Mater. Rev., 2016, 30(17): 148
|
44 |
郭宝会, 郭喜平. Nb-Ti-Cr-Si基超高温合金的室温断裂韧性研究进展 [J]. 材料导报, 2016, 30(17): 148
|
45 |
Yang Z Q, Shang J X. First-principles study on the thermodynamic properties of Nb, Cr2Nb and Nb5Si3 alloys [J]. Mater. Sci. Forum, 2013, 749: 466
|
46 |
Fernandes P B, Coelho G C, Ferreira F, et al. Thermodynamic modeling of the Nb-Si system [J]. Intermetallics, 2002, 10: 993
|
47 |
Bewlay B P, Lipsitt H A, Jackson M R, et al. Solidification processing of high temperature intermetallic eutectic-based alloys [J]. Mater. Sci. Eng., 1995, A192-193: 534
|
48 |
Qu S Y. Basic Research on Nb/Nb5Si3 composites [D]. Beijing: Beijing Institute of Aerial Materials, 2002
|
48 |
曲士昱. Nb/Nb5Si3复合材料基础研究 [D]. 北京: 北京航空材料研究院, 2002
|
49 |
Su Y Q, Guo J Z, Liu C, et al. Progress in theory on directional solidification technology [J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 25
|
49 |
苏彦庆, 郭景哲, 刘 畅等. 定向凝固技术与理论研究的进展 [J]. 特种铸造及有色合金, 2006, 26: 25
|
50 |
Grammenos I, Tsakiropoulos P. Study of the role of Hf, Mo and W additions in the microstructure of Nb-20Si silicide based alloys [J]. Intermetallics, 2011, 19: 1612
|
51 |
Bewlay B P, Jackson M R, Subramanian P R, et al. A review of very-high-temperature Nb-silicide-based composites [J]. Metall. Mater. Trans., 2003, 34A: 2043
|
52 |
Kang Y W, Qu S Y, Song J X, et al. Microstructure and mechanical properties of Nb-Ti-Si-Al-Hf-xCr-yV multi-element in situ composite [J]. Mater. Sci. Eng., 2012, A534: 323
|
53 |
Wu C L, Zhou L Z, Guo J T. Effect of Ta content on microstructure and compressive properties of Nb-Nb5Si3 eutectic alloys [J]. Acta Metall. Sin., 2006, 42: 1061
|
53 |
伍春兰, 周兰章, 郭建亭. Ta含量对Nb-Nb5Si3共晶合金的组织和压缩性能的影响 [J]. 金属学报, 2006, 42: 1061
|
54 |
Guo Y L, Jia L N, Kong B, et al. Microstructure and fracture toughness of Nb-Si based alloys with Ta and W additions [J]. Intermetallics, 2018, 92: 1
|
55 |
Wang Y Y, Li S S, Wu M L, et al. Effect of Zr and Mg on microstructure and fracture toughness of Nb-Si based alloys [J]. Rare Met., 2011, 30: 326
|
56 |
Li Z F, Tsakiropoulos P. The effect of Ge and Ti additions on the microstructures and properties of Nb-18Si based alloys [J]. MRS Online Proc. Lib., 2011, 1295: 379
|
57 |
Thandorn T, Tsakiropoulos P. Study of the role of B addition on the microstructure of the Nb-24Ti-18Si-8B alloy [J]. Intermetallics, 2010, 18: 1033
|
58 |
Ma C, Li J, Tan Y, et al. Effect of B addition on the microstructures and mechanical properties of Nb-16Si-10Mo-15W alloy [J]. Mater. Sci. Eng., 2004, A384: 377
|
59 |
Sun G X, Jia L N, Ye C T, et al. Balancing the fracture toughness and tensile strength by multiple additions of Zr and Y in Nb-Si based alloys [J]. Intermetallics, 2021, 133: 107172
|
60 |
Guo F W, Kang Y W, Xiao C B. Microstructure and room temperature fracture toughness of Nb-Si materials alloyed by rare earth elements (La, Sm, Tb) [J]. J. Mater. Eng., 2016, 44(10): 8
|
60 |
郭丰伟, 康永旺, 肖程波. 稀土元素(La, Sm, Tb)合金化铌硅材料显微组织及室温断裂韧度 [J]. 材料工程, 2016, 44(10): 8
|
61 |
Tian Y X, Guo J T, Zhou L Z, et al. Effect of dy addition on microstructure and mechanical properties of Nb-Nb5Si3 eutectic alloy [J]. Acta Metall. Sin., 2008, 44: 589
|
61 |
田玉新, 郭建亭, 周兰章等. Dy对Nb-Nb5Si3共晶合金显微组织和力学性能的影响 [J]. 金属学报, 2008, 44: 589
|
62 |
Guo Y L, Jia L N, Zhang H R, et al. Microstructure and high-temperature oxidation behavior of dy-doped Nb-Si-Based alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 742
|
63 |
Wang F X, Luo L S, Meng X Y, et al. Microstructures and mechanical properties of melt hydrogenated Nb-Si based alloy [J]. Int. J. Hyd. Energy, 2017, 42: 26417
|
64 |
Sekido N, Kimura Y, Miura S, et al. Microstructure development of unidirectionally solidified (Nb)/Nb3Si eutectic alloys [J]. Mater. Sci. Eng., 2007, A444: 51
|
65 |
Ma X, Guo X P, Fu M S. Precipitation of γ-Nb5Si3 in Nb-Si based ultrahigh temperature alloys [J]. Intermetallics, 2018, 98: 11
|
66 |
Wang F X. Growth behavior and morphology control of primary Nb5Si3 phase of Nb-Si base alloy [D]. Harbin: Harbin Institute of Technology, 2018
|
66 |
王富鑫. Nb-Si合金中Nb5Si3相生长机理及形貌控制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
|
67 |
Wang F X, Luo L S, Meng X Y, et al. Morphological evolution of primary β-Nb5Si3 phase in Nb-Mo-Si alloys [J]. J. Alloys Compd., 2018, 741: 51
|
68 |
Zhang S. Effects of Hf, B and Cr additions on the microstructure and properties of Nb-Si based ultrahigh temperature alloys [D]. Xi'an: Northwestern Polytechnical University, 2016
|
68 |
张 松. Hf、B和Cr对Nb-Si基超高温合金组织和性能的影响 [D]. 西安: 西北工业大学, 2016
|
69 |
Zeng Y X, Guo X P, Qiao Y Q, et al. Effect of Zr addition on microstructure and oxidation resistance of Nb-Ti-Si base ultrahigh-temperature alloys [J]. Acta Metall. Sin., 2015, 51: 1049
|
69 |
曾宇翔, 郭喜平, 乔彦强等. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响 [J]. 金属学报, 2015, 51: 1049
|
70 |
Zou A H, Xu J, Huang H J. Effects of the alloying elements Ti, Cr, Al and B on the mechanical properties and electronic structure of α-Nb5Si3 [J]. Acta Phys. Chim. Sin., 2014, 30: 289
|
70 |
邹爱华, 徐 江, 黄豪杰. Ti, Cr, Al和B合金化元素对α-Nb5Si3力学性能和电子结构的影响 [J]. 物理化学学报, 2014, 30: 289
|
71 |
Mendiratta M G, Lewandowski J J, Dimiduk D M. Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys [J]. Metall. Trans., 1991, 22A: 1573
|
72 |
Yan Y C, Kang Y W, Song J X, et al. Research progress in directional solidification of Nb-Si based superalloy [J]. Mater. Rev., 2014, 28(1): 86
|
72 |
燕云程, 康永旺, 宋尽霞等. Nb-Si基超高温合金的定向凝固研究进展 [J]. 材料导报, 2014, 28(1): 86
|
73 |
Sekido N, Kimura Y, Miura S, et al. Fracture toughness and high temperature strength of unidirectionally solidified Nb-Si binary and Nb-Ti-Si ternary alloys [J]. J. Alloys Compd., 2006, 425: 223
|
74 |
Tian Y X, Guo J T, Cheng G M, et al. Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb-silicide base alloy [J]. Mater. Des., 2009, 30: 2274
|
75 |
Kang Y W, Qu S Y, Song J X, et al. Effect of directional solidification rate on microstructures and properties of Nb-Si system in situ composites [J]. Acta Metall. Sin., 2008, 44: 593
|
75 |
康永旺, 曲士昱, 宋尽霞等. 定向凝固速率对Nb-Si系原位复合材料组织和性能的影响 [J]. 金属学报, 2008, 44: 593
|
76 |
Sekito Y, Miura S, Ohkubo K, et al. Effect of growth rate on microstructure and microstructure evolution of directionally solidified Nb-Si alloys [J]. MRS Symp. Proc., 2009, 1128: 281
|
77 |
Huang Q, Guo X P, Kang Y W, et al. Microstructures and mechanical properties of directionally solidified multi-element Nb-Si alloy [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 146
|
78 |
Guo X P, Gao L M. Microstructure and mechanical properties of nb based ultrahigh temperature alloy directionally solidified by EBFZM [J]. J. Aeronaut. Mater., 2006, 26(3): 47
|
78 |
郭喜平, 高丽梅. 电子束区熔定向凝固Nb基高温合金的组织和性能 [J]. 航空材料学报, 2006, 26(3): 47
|
79 |
Yao C F, Guo X P, Guo H S. Microstructural characteristics of integrally directionally solidified Nb-Ti-Si base ultrahigh temperature alliy with crucibles [J]. Acta Metall. Sin., 2008, 44: 579
|
79 |
姚成方, 郭喜平, 郭海生. Nb-Ti-Si基超高温合金的有坩埚整体定向凝固组织分析 [J]. 金属学报, 2008, 44: 579
|
80 |
He Y S, Guo X P, Guo H S, et al. Microstructure and solid/liquid interface morphology evolution of integrally directionally solidified Nb-silicide-based ultrahigh temperature alloy [J]. Acta Metall. Sin., 2009, 45: 1035
|
80 |
何永胜, 郭喜平, 郭海生等. 铌硅化物基超高温合金整体定向凝固组织和固/液界面形态演化 [J]. 金属学报, 2009, 45: 1035
|
81 |
Guo X P, Guo H S, Yao C F, et al. Integrally directionally solidified microstructure of an niobium silicide based ultrahigh temperature alloy [J]. Int. J. Mod. Phys., 2009, 23B: 1093
|
82 |
Wang Y, Guo X P. Effect of solidifying rate on integrally directionally solidified microstructure and solid/liquid interface morphology of an Nb-Ti-Si base alloy [J]. Acta Metall. Sin., 2010, 46: 506
|
82 |
王 勇, 郭喜平. 凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响 [J]. 金属学报, 2010, 46: 506
|
83 |
Guo H S, Guo X P. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy [J]. Scr. Mater., 2011, 64: 637
|
84 |
Fang X, Guo X P, Qiao Y Q. Variation in morphology and crystallographic orientation of directionally solidified Nb-Si based alloys at high withdrawal rates [J]. J. Alloys Compd., 2019, 819: 153023
|
85 |
Yan Y C, Ding H S, Kang Y W, et al. Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification [J]. Mater. Des., 2014, 55: 450
|
86 |
Fang X, Guo X P, Qiao Y Q. Microstructural transition of Nb-Si based alloy during directional solidification upon abruptly decreasing withdrawal rate [J]. J. Alloys Compd., 2020, 843: 156073
|
87 |
Ye C T, Jia L N, Jin Z H, et al. Directional solidification of hypereutectic Nb-Si-Ti alloy: Influence of drawing velocity change on microstructures [J]. J. Alloys Compd., 2020, 844: 156123
|
88 |
Yan Y C, Ding H S, Song J X. Solidification structure analysis of cold crucible directionally solidified Nb-Si based alloy [J]. Procedia Eng., 2012, 27: 1033
|
89 |
Yan Y C. Microstructures and properties of Nb-Si based alloy fabricated by electromagnetic cold crucible directional solidification [D]. Harbin: Harbin Institute of Technology, 2014
|
89 |
燕云程. Nb-Si基合金电磁冷坩埚定向凝固组织和性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|