|
|
埋弧焊中焊剂对焊缝金属成分调控的研究进展 |
王聪( ), 张进 |
东北大学 冶金学院 沈阳 110819 |
|
Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview |
WANG Cong( ), ZHANG Jin |
School of Metallurgy, Northeastern University, Shenyang 110819, China |
引用本文:
王聪, 张进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展[J]. 金属学报, 2021, 57(9): 1126-1140.
Cong WANG,
Jin ZHANG.
Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview[J]. Acta Metall Sin, 2021, 57(9): 1126-1140.
1 |
Kou S. Welding Metallurgy [M]. 2nd Ed., Hoboken, New Jersey: John Wiley & Sons, Inc., 2003: 22
|
2 |
Wu C X, Zhang J X, Zhu B K, et al. Development and application of high efficiency submerged arc welding technology [J]. Hot Work. Technol., 2009, 38(23): 173
|
2 |
武春学, 张俊旭, 朱丙坤等. 高效埋弧焊技术的发展及应用 [J]. 热加工工艺, 2009, 38(23): 173
|
3 |
Zhang J, Leng J, Wang C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel [J]. Metall. Mater. Trans., 2019, 50B: 2083
|
4 |
Qiu C L, Lan L Y, Zhao D W, et al. Microstructural evolution and toughness in the HAZ of submerged arc welded low welding crack susceptibility steel [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 49
|
5 |
Xu K, Fang T, Zhao L F, et al. Effect of trace element on microstructure and fracture toughness of weld metal [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 425
|
6 |
Olson D, Liu S, Frost R, et al. Nature and behavior of fluxes used for welding [M]. ASM Handbook, Materials Park, OH, 1993, 6: 55
|
7 |
Natalie C A, Olson D L, Blander M. Physical and chemical behavior of welding fluxes [J]. Annu. Rev. Mater. Sci., 1986, 16: 389
|
8 |
Cao J M, Tang B G, Wang S L, et al. A new fused flux for low hydrogen high toughness welds [J]. Trans. China Weld. Inst., 1989, 10(1): 1
|
8 |
曹进茂, 唐伯钢, 王世亮等. 熔炼型低氢高韧性焊剂的研究 [J]. 焊接学报, 1989, 10(1): 1
|
9 |
Bang K S, Park C, Jung H C, et al. Effects of flux composition on the element transfer and mechanical properties of weld metal in submerged arc welding [J]. Met. Mater. Int., 2009, 15: 471
|
10 |
Belton G R, Moore T J, Tankins E S. Slag-metal reactions in submerged arc welding [J]. Weld. J., 1963, 42: 289
|
11 |
Fox A, Eakes M, Franke G. The effect of small changes in flux basicity on the acicular ferrite content and mechanical properties of submerged arc weld metal of navy HY-100 steel [J]. Weld. J., 1996, 75: 330S
|
12 |
North T, Bell H, Nowicki A, et al. Slag/metal interaction, O and toughness in submerged arc welding [J]. Weld. J., 1978, 57: 63
|
13 |
Tuliani S, Boniszewski T, Eaton N. Notch toughness of commercial submerged arc weld metal [J]. Weld. Met. Fabr., 1969, 37: 327
|
14 |
Chen B L, Zhou Y H. Improvement of toughness and strength of high strength steel submerged arc weld metal [J]. Trans. China Weld. Inst., 1987, 8(7): 153
|
14 |
陈伯蠡, 周运鸿. 高强钢埋弧焊焊缝的强韧化研究 [J]. 焊接学报, 1987, 8(7): 153
|
15 |
Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
|
15 |
李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
|
16 |
Zhang M, Jia F, Cheng K K, et al. Influence of quenching and tempering on microstructure and properties of welded joints of G520 martensitic steel [J]. Acta Metall. Sin., 2019, 55: 1379
|
16 |
张 敏, 贾 芳, 程康康等. 调质处理对G520钢焊接接头组织及性能的影响 [J]. 金属学报, 2019, 55: 1379
|
17 |
Tian Z L, Xu L H, Peng Y, et al. Formation mechanism of the precipitate-free zone in high strength aluminum alloy welds [J]. Acta Metall. Sin., 2008, 44: 91
|
17 |
田志凌, 许良红, 彭 云等. 高强铝合金焊接接头无析出物区的形成机理 [J]. 金属学报, 2008, 44: 91
|
18 |
Tabuchi M, Kondo M, Watanabe T, et al. Improvement of type IV cracking resistance of 9Cr heat resisting steel weldment by boron addition [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 17: 331
|
19 |
Guo M H, Shao D C, Dong Z G, et al. Welding between high manganese steel and high carbon steel [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 13: 112
|
20 |
Li X Q. Chemical reaction at slag/metal interface during quasi-steady welding based on non-equilibrium thermodynamics [D]. Tianjin: Tianjin University, 2007
|
20 |
李晓泉. 基于非平衡热力学的准稳态焊接钢-渣界面化学冶金行为 [D]. 天津: 天津大学, 2007
|
21 |
Olson D L, Dixon R, Liby A L. Welding: Theory and Practice [M]. Amsterdam: Elsevier, 1990: 117
|
22 |
Olson D, Edwards G, Liu S, et al. Non-equilibrium behaviour of weld metal in flux-related processes [J]. Weld. World, 1993, 31: 142
|
23 |
Erokhin A A, translated by Zhao Y N. Theory of Fusion Welding [M]. Beijing: China Machine Press, 1981: 171
|
23 |
Erokhin A A著, 赵裕民译. 熔焊原理 [M]. 北京: 机械工业出版社, 1981: 171
|
24 |
Zhang J, Coetsee T, Basu S, et al. Impact of gas formation on the transfer of Ti and O from TiO2-bearing basic-fluoride fluxes to submerged arc welded metals: A thermodynamic approach [J]. Calphad, 2020, 71: 102195
|
25 |
Chai C S, Eagar T W. Slag-metal equilibrium during submerged arc welding [J]. Metall. Trans., 1981, 12B: 539
|
26 |
Chai C S. Slag-metal reactions during flux shielded arc welding [D]. Cambridge: Massachusetts Institute of Technology, 1980
|
27 |
Christensen N, Chipman J. Slag-metal interaction in arc welding [J]. Weld. J., 1953, 15: 1
|
28 |
Mitra U, Eagar T W. Slag-metal reactions during welding: Part II. Theory [J]. Metall. Trans., 1991, 22B: 73
|
29 |
Mitra U, Eagar T W. Slag-metal reactions during welding: Part I. Evaluation and reassessment of existing theories [J]. Metall. Trans., 1991, 22B: 65
|
30 |
Mitra U, Eagar T. Slag-metal reactions during welding: Part III. Verification of the theory [J]. Metall. Trans., 1991, 22B: 83
|
31 |
Burck P A, Indacochea J E, Olson D L. Effects of welding flux additions on 4340 steel weld metal composition [J]. Weld. J., 1990, 3: 115s
|
32 |
Indacochea J E, Blander M, Christensen N, et al. Chemical reactions during submerged arc welding with FeO-MnO-SiO2 fluxes [J]. Metall. Trans., 1985, 16B: 237
|
33 |
Mitra U, Sutton R D, Eagar T W. Comparison of theoretically predicted and experimentally determined submerged arc weld deposit compositions [J]. Metall. Trans., 1983, 14B: 510
|
34 |
Eagar T W. Thermochemistry of joining [A]. Proc. Elliott Symp. Chem. Process Metall. [C]. Warrendale, PA: Iron and Steel Society,1991: 197
|
35 |
Zhang J, Coetsee T, Wang C. Element transfer behaviors of fused CaF2-SiO2 fluxes subject to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 16
|
36 |
Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-SiO2-MnO fluxes under high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 885
|
37 |
Zhang J, Coetsee T, Dong H B, et al. Elucidating the roles of SiO2 and MnO upon decarburization during submerged arc welding: A thermodynamic study into EH36 shipbuilding steel [J]. Metall. Mater. Trans., 2020, 51B: 1805
|
38 |
Zhang J, Coetsee T, Dong H B, et al. Fine-tuned element transfer strategies for ternary CaF2-SiO2-CaO fluxes in submerged arc welding: An environmentally friendly approach [J]. Metall. Mater. Trans., 2020, 51B: 1350
|
39 |
Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-TiO2 fluxes in EH36 shipbuilding steel during high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 1953
|
40 |
Bale C W, Bélisle E, Chartrand P, et al. Reprint of: FactSage thermochemical software and databases, 2010-2016 [J]. Calphad, 2016, 55: 1
|
41 |
Bale C W, Chartrand P, Degterov S A, et al. Factsage thermochemical software and databases [J]. Calphad, 2002, 26: 189
|
42 |
Zhang J, Wang C, Coetsee T. Assessment of weld metal compositional prediction models geared towards submerged arc welding: Case studies involving CaF2-SiO2-MnO and CaO-SiO2-MnO fluxes [J]. Metall. Mater. Trans., 2021, doi: 10.1007/s11663-021-02190-x.
|
43 |
Zhang J, Wang C, Coetsee T. Thermodynamic evaluation of element transfer behaviors for fused CaO-SiO2-MnO fluxes subjected to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2021, doi: 10.1007/s11663-021-02221-7
|
44 |
Jindal S, Chhibber R, Mehta N P. Prediction of element transfer due to flux and optimization of chemical composition and mechanical properties in high-strength low-alloy steel weld [J]. Proc. Inst. Mech. Eng., 2015, 229B: 785
|
45 |
Kanjilal P, Pal T, Majumdar S. Prediction of element transfer in submerged arc welding [J]. Weld. J., 2007, 10: 40
|
46 |
Mitra U, Eagar T W. Slag metal reactions during submerged arc welding of alloy steels [J]. Metall. Trans., 1984, 15A: 217
|
47 |
Wu X N, Feng Y H, Li Y, et al. Numerical simulation and orthogonal analysis on coupled arc with molten pool for keyholing plasma arc welding [J]. Acta Metall. Sin., 2015, 51: 1365
|
47 |
吴宣楠, 冯妍卉, 李 岩等. 穿孔等离子弧焊接弧与熔池的耦合模拟及正交分析 [J]. 金属学报, 2015, 51: 1365
|
48 |
Wu C S, Zhang M X, Li K H, et al. Study on the process mechanism of high-speed arc welding DE-GMAW [J]. Acta Metall. Sin., 2007, 43: 663
|
48 |
武传松, 张明贤, 李克海等. DE-GMAW高速电弧焊工艺机理的研究 [J]. 金属学报, 2007, 43: 663
|
49 |
Jian X X, Wu C S. Influence of Fe vapour on weld pool behavior of plasma arc welding [J]. Acta Metall. Sin., 2016, 52: 1467
|
49 |
菅晓霞, 武传松. Fe蒸气对等离子弧焊接熔池行为的影响 [J]. 金属学报, 2016, 52: 1467
|
50 |
Eagar T W. Sources of weld metal oxygen contamination during submerged arc welding [J]. Weld. J., 1978, 57: 76
|
51 |
Lau T, Weatherly G, Mclean A. The sources of oxygen and nitrogen contamination in submerged arc welding using CaO-Al2O3 based fluxes [J]. Weld. J., 1985, 64: 343
|
52 |
Polar A, Indacochea J, Blander M. Electrochemically generated oxygen contamination in submerged arc welding [J]. Weld. J., 1990, 69: 69
|
53 |
Li X Q, Liu P F, Wang G Y. Investigation on mechanism of oxygen gaining occurring in droplet reaction zone during SAW [J]. J. Aeronaut. Mater., 2006, 26(1): 63
|
53 |
李晓泉, 刘鹏飞, 王光耀. SAW焊接熔滴反应区增氧机制探讨 [J]. 航空材料学报, 2006, 26(1): 63
|
54 |
Mitra U. Kinetics of slag metal reactions during submerged arc welding of steel [D]. Cambridge: Massachusetts Institute of Technology, 1984
|
55 |
Li X Q, Yang X G, Fang C F. Thermodynamical analysis of active SiO2 in interfacial chemical reaction between slag and liquid metal based on thermal-dynamic coupling [J]. Trans. China Weld. Inst., 2005, 26(10): 43
|
55 |
李晓泉, 杨旭光, 方臣富. 活性SiO2在焊接熔渣-金属界面化学反应的热动力学分析 [J]. 焊接学报, 2005, 26(10): 43
|
56 |
Davis M L, Bailey N. Evidence from inclusion chemistry of element transfer during submerged arc welding [J]. Weld. J., 1991, 70: 57
|
57 |
Dowling J M, Corbett J M, Kerr H W. Inclusion phases and the nucleation of acicular ferrite in submerged arc welds in high strength low alloy steels [J]. Metall. Trans., 1986, 17A: 1611
|
58 |
Babu S S, David S A. Inclusion formation and microstructure evolution in low alloy steel welds [J]. ISIJ Int., 2002, 42: 1344
|
59 |
Rein R H. Proceedings, workshop on welding research opportunities held at office of naval research [R]. Arlington: Office of Naval Research, Arlington VA, 1974
|
60 |
Chai C, Eagar T. Slag metal reactions in binary CaF2-metal oxide welding fluxes [J]. Weld. J., 1982, 61: 229
|
61 |
Dallam C B, Liu S, Olson D L. Flux composition dependence of microstructure and toughness of submerged arc HSLA weldments [J]. Weld. J., 1985, 64: 140
|
62 |
Cruz-Crespo A, Quintana Puchol R, Perdomo González L, et al. Effect of CaO from the slag system MnO-SiO2-CaO on the chemical composition of weld metal [J]. Weld. Int., 2010, 24: 518
|
63 |
Polar A, Indacochea J, Blander M. Fundamentals of the chemical behavior of select welding fluxes [J]. Weld. J., 1991, 70: 15
|
64 |
Lau T, Weatherly G C, Mclean A. Gas/metal/slag reactions in submerged arc welding using CaO-Al2O3 based fluxes [J]. Weld. J., 1986, 65: 31
|
65 |
Block-Bolten A, Eagar T W. Metal vaporization from weld pools [J]. Metall. Trans., 1984, 15B: 461
|
66 |
Mills K. Slag Atlas [M]. 2nd Ed., Dusseldorf: Verlag Stahleisen GmbH, 1995: 186
|
67 |
Sommerville I D, Kay D A R. Activity determinations in the CaF2-CaO-SiO2 system at 1450oC [J]. Metall. Trans., 1971, 2: 1727
|
68 |
Kohno R, Takami T, Mori N, et al. New fluxes of improved weld metal toughness for HSLA steels [J]. Weld. J., 1982, 61: 373
|
69 |
Liao F C, Liu S. The effect of deoxidation sequence of carbon manganese steel weld metal microstructures [J]. Weld. J., 1990, 71: 94
|
70 |
Eriksson G, Pelton A D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO-TiO2, MgO-TiO2, FeO-TiO2, Ti2O3-TiO2, Na2O-TiO2, and K2O-TiO2 systems [J]. Metall. Trans., 1993, 24B: 795
|
71 |
Cancarevic M, Zinkevich M, Aldinger F. Thermodynamic description of the Ti-O system using the associate model for the liquid phase [J]. Calphad, 2007, 31: 330
|
72 |
Sengupta V, Havrylov D, Mendez P. Physical phenomena in the weld zone of submerged arc welding—A review [J]. Weld. J., 2019, 98: 283S
|
73 |
Singh B, Khan Z A, Siddiquee A N, et al. Effect of CaF2, FeMn and NiO additions on impact strength and hardness in submerged arc welding using developed agglomerated fluxes [J]. J. Alloys Compd., 2016, 667: 158
|
74 |
Singh B, Khan Z A, Siddiquee A N, et al. Experimental study on effect of flux composition on element transfer during submerged arc welding [J]. Sādhanā, 2018, 43: 26
|
75 |
Loder D, Michelic S K, Mayerhofer A, et al. On the capability of nonmetallic inclusions to act as nuclei for acicular ferrite in different steel grades [J]. Metall. Mater. Trans., 2017, 48B: 1992
|
76 |
Evans G. The effect of carbon on the microstructure and properties of C-Mn all-weld metal deposits [J]. Weld. J., 1983, 62: 313
|
77 |
Farrar R A, Harrison P L. Acicular ferrite in carbon-manganese weld metals: An overview [J]. J. Mater. Sci., 1987, 22: 3812
|
78 |
Ferrante M, Farrar R A. The role of oxygen rich inclusions in determining the microstructure of weld metal deposits [J]. J. Mater. Sci., 1982, 17: 3293
|
79 |
Ito J, Nakanishi M. Study on charpy impact properties of weld metal with submerged arc welding [J]. Sumit. Search, 1976, 15: 42
|
80 |
Jindal S, Chhibber R, Mehta N P. Effect of flux constituents and basicity index on mechanical properties and microstructural evolution of submerged arc welded high strength low alloy steel [J]. Mater. Sci. Forum, 2013, 738-739: 242
|
81 |
Evans G. Effect of manganese on the microstructure and properties of all-weld-metal deposits [J]. Weld. J., 1980, 59: 68
|
82 |
Harrison P, Farrar R. Microstructural development and toughness of C-Mn and C-Mn-Ni weld metals. Part 1. Microstructural development [J]. Met. Constr., 1987, 34: 15
|
83 |
Chai C S, Eagar T W. Prediction of weld-metal composition during flux-shielded welding [J]. J. Mater. Energy Syst., 1983, 5: 160
|
84 |
Coetsee T. Phase chemistry of submerged arc welding (SAW) fluoride based slags [J]. J. Mater. Res. Technol., 2020, 9: 9766
|
85 |
Devletian J, Chen J, Wood W, et al. Fundamental Aspects of Electroslag Welding of Titanium Alloys [M]. Materials Park, OH: ASM International, 1990, 6: 419
|
86 |
Sikorski A K. Effects of the chemical composition of the gas shield on the properties of flux-cored wire welds [J]. Weld. Int., 1993, 7: 683
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|