Please wait a minute...
金属学报  2021, Vol. 57 Issue (12): 1539-1548    DOI: 10.11900/0412.1961.2020.00404
  研究论文 本期目录 | 过刊浏览 |
高温合金单晶铸件中共晶组织分布的表面效应
马德新1,2, 赵运兴1,2(), 徐维台1, 皮立波1, 李重行1
1.深圳万泽中南研究院 深圳 518045
2.中南大学 粉末冶金研究院 长沙 410083
Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings
MA Dexin1,2, ZHAO Yunxing1,2(), XU Weitai1, PI Libo1, LI Zhongxing1
1.Wedge Central South Research Institute, Shenzhen 518045, China
2.Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
引用本文:

马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
Dexin MA, Yunxing ZHAO, Weitai XU, Libo PI, Zhongxing LI. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. Acta Metall Sin, 2021, 57(12): 1539-1548.

全文: PDF(3050 KB)   HTML
摘要: 

对一种第三代单晶高温合金的单晶叶片和试棒铸件进行了检测,没有观察到共晶组织在横向上向铸件外表面偏聚的现象,但是发现它在垂直方向上发生了明显的不均匀分布。铸件朝下的底面区域共晶很少,而朝上的顶面区域则有大量的共晶聚集。其原因在于定向凝固过程中γ′相形成元素Al + Ti + Ta会在枝晶间液体中富集,并通过扩散和对流的方式向上迁移,最后在铸件的上表面聚集而生成大量的γ/γ′共晶组织。铸态共晶上表面聚集的影响因素除了合金成分,还有凝固条件和铸件形状。对铸件固溶热处理后组织的研究表明,铸件外表面区域的残余共晶量明显少于内部区域。这是因为铸件表面Al和Ti元素的挥发造成了γ′形成元素的贫化,导致共晶组织固溶速率加快。

关键词 单晶高温合金叶片共晶组织固溶热处理上表面聚集效应    
Abstract

In recent years, surface γ/γ′-eutectics have been observed to form continuous layers along the peripheries of the outer surfaces of Ni-based single crystal (SC) castings. This type of solidification defect poses specific concerns for turbine blade production because large surface eutectics are very difficult to completely dissolve during practical heat treatment. In the present work, a third generation SC superalloy was used to cast turbine blades and cylindrical bars. However, no eutectic layer was observed on the outer surface of the blade aerofoils and bars in hundreds of castings. Instead of the lateral eutectic enrichment on the outer side surface, a non-uniform distribution of eutectics along the solidification length was detected. Eutectics were found to accumulate on the upper surface of solidification units such as platforms whereas less eutectics were observed on the bottom surface. Especially on the inclined upper surface at the junctions between platform and airfoil, a large amount of eutectics were accumulated so that only a small part could dissolve during conventional solution heat treatment. This phenomenon, called the eutectic accumulation on the upper surface, could be attributed to the upward solutal flow of eutectics forming elements through diffusion and convection, which is finally stopped beneath the upper surface. The factors influencing the upward eutectic accumulation are the chemical composition of the alloys, the process conditions, and the local geometry of the castings, such as the platform thickness and the inclination of the upper surface. Another surface effect was also observed on the eutectic dissolution during heat treatment process. It was found that the eutectics in the outer surface area were dissolved completely during heat treatment process than that in the internal one. The possible explanation is that at high temperatures, the eutectic forming elements Al and Ti evaporate from the casting surface faster than the other elements, as experimentally confirmed by chemical measurement.

Key wordssingle crystal superalloy    turbine blade    eutectics    solution treatment    upward accumulation
收稿日期: 2020-10-10     
ZTFLH:  TG146  
基金资助:深圳市发展和改革委员会项目(SZDRC20181000);广东省重点领域研发计划项目(2019B010935001)
作者简介: 马德新,男,1955年生,教授,博士
图1  变截面试棒的形状尺寸示意图
图2  单晶叶片铸件中叶身横截面、背面和盆面区域以及枝晶间共晶组织的OM像
ElementCD / (mass fraction / %)CI / (mass fraction / %)km = CD / CI
Cr3.843.551.08
Co6.986.761.03
W9.345.221.79
Mo0.440.351.26
Al4.395.190.85
Ti0.050.130.38
Ta5.159.340.55
Re6.893.681.87
Ni62.9365.780.96
表1  图2d中枝晶干成分(CD)与枝晶间成分(CI)的测量结果及各元素的偏析比(km)
图3  单晶叶片缘板的纵截面及上、下表面的横截面显微组织的OM像
图4  变截面试棒铸件的纵截面和横截面形貌,显示出环形上表面的共晶聚集现象
ElementCU / (mass fraction / %)CB / (mass fraction / %)kM = CB / CU
Cr4.193.990.95
Co6.816.941.02
W6.877.851.14
Mo0.490.661.35
Al5.124.540.89
Ti0.290.100.34
Ta8.376.830.82
Re4.255.901.39
Ni63.6263.190.99
表2  变截面试棒外环区域上、下表面化学成分的对比
图5  固溶热处理后叶身横截面上的残余共晶分布及局部放大图
图6  试棒侧表面区域横截面的铸态组织与固溶态组织的OM像
AreaCrCoWMoAlTiTaReNi
S3.656.577.470.395.080.148.445.42Bal.
I3.626.677.400.335.400.178.255.05Bal.
表3  试棒表面区域S与内部区域I中的化学成分测量结果(图6b) (mass fraction / %)
图7  固溶热处理后的缘板与叶身转接处纵截面显微组织的OM像,及其两侧部位A和B的放大图
图8  一个铸件单元上下表面之间的定向凝固及共晶聚集过程示意图
图9  合金元素在纯Ni中的交互扩散系数(D)随温度(T)的变化[26]
1 Seo S M, Lee J H, Yoo Y S, et al. A comparative study of the γ/γ′ eutectic evolution during the solidification of Ni-base superalloys [J]. Metall. Mater. Trans., 2011, 42A: 3150
2 Brewster G, Dong H B, Green N R, et al. Surface Segregation during directional solidification of Ni-base superalloys [J]. Metall. Mater. Trans., 2008, 39B: 87
3 Cao L. Research on the formation of surface eutectic of Ni-base single crystal superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2015
3 曹 亮. 镍基单晶高温合金中表面共晶形成行为研究 [D]. 沈阳: 中国科学院金属研究所, 2015
4 Cao L, Yao L, Zhou Y Z, et al. Formation of the surface eutectic of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2017, 33: 347
5 Cao L, Zhou Y Z, Jin T, et al. Effects of Re on surface eutectic formation for Ni-base single crystal superalloys during directional solidification [J]. J. Mater. Sci. Technol., 2017, 33: 1308
6 Sidhu R K, Ojo O A, Chaturvedi M C. Sub-solidus melting of directionally solidified Rene 80 superalloy during solution heat treatment [J]. J. Mater. Sci., 2008, 43: 3612
7 Hegde S R, Kearsey R M, Beddoes J C. Designing homogenization-solution heat treatments for single crystal superalloys [J]. Mater. Sci. Eng., 2010, A527: 5528
8 Chen R Z. A problem in manufacturing and using of cast turbine blades—Surface recrystallization [J]. Aviat. Eng. Maint., 1990, (4): 22
8 陈荣章. 铸造涡轮叶片制造和使用中的一个问题——表面再结晶 [J]. 航空制造工程, 1990, (4): 22
9 Xiong J C, Li J R, Liu S Z, et al. Microstructure of surface recrystallization of single crystal superalloy DD6 [J]. J. Mater. Eng., 2009, (): 110
9 熊继春, 李嘉荣, 刘世忠等. 单晶高温合金DD6表面再结晶组织 [J]. 材料工程, 2009, (): 110
10 Ma D X, Bührig-Polaczek A. Application of heat-conductor technique to production of single crystal turbine blade [J]. Metall. Mater. Trans., 2009, 40B: 738
11 Ma D X, Wu Q, Bührig-Polaczek A. Some new observations on freckle formation in directionally solidified superalloy components [J]. Metall. Mater. Trans., 2012, 43B: 344
12 Ma D X. Development of single crystal solidification technology for production of superalloy turbine blades [J]. Acta Metall. Sin., 2015, 51: 1179
12 马德新. 高温合金叶片单晶凝固技术的新发展 [J]. 金属学报, 2015, 51: 1179
13 Ma D X, Wang F X, Wu Q, et al. Innovations in casting techniques for single crystal turbine blades of superalloys [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendale, PA: TMS, 2016: 237
14 Ma D X, Wang F, Wu Q, et al. Temperature evolution and grain defect formation during single crystal solidification of a blade cluster [J]. Chin. Foundr., 2017, 14: 456
15 Ma D X. Novel casting processes for single-crystal turbine blades of superalloys [J]. Front. Mech. Eng., 2018, 13: 3
16 Giamei A F, Kear B H. On the nature of freckles in nickel base superalloys [J]. Metall. Trans., 1970, 1: 2185
17 Copley S M, Giamei A F, Johnson S M, et al. The origin of freckles in unidirectionally solidified castings [J]. Metall. Trans., 1970, 1: 2193
18 Auburtin P, Cockcroft S L, Mitchell A, et al. Liquid density inversions during the solidification of superalloys and their relationship to freckle formation in castings [A]. Superalloy 1996 [C]. Warrendale, PA: TMS, 1996: 443
19 Beckmann C, Gu J P, Boettinger W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans., 2000, 31A: 2545
20 Ma D X, Bührig-Polaczek A. The geometrical effect on freckle formation in the directionally solidified superalloy CMSX-4 [J]. Metall. Mater. Trans., 2014, 45A: 1435
21 Ma D X. Freckle formation during directional solidification of complex castings of superalloys [J]. Acta Metall. Sin., 2016, 52: 426
21 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成 [J]. 金属学报, 2016, 52: 426
22 Hong J P, Ma D X, Wang J, et al. Freckle defect formation near the casting interfaces of directionally solidified superalloys [J]. Materials, 2016, 9: 929
23 Hong J P, Ma D X, Wang J, et al. Geometrical effect of freckle formation on directionally solidified superalloy CM247 LC components [J]. J. Alloys Compd., 2015, 648: 1076
24 Ma D X, Zhou B, Bührig-Polaczek A. Investigation of freckle formation under various solidification conditions [J]. Adv. Mater. Res., 2011, 278: 428
25 Wilson B C, Cutler E R, Fuchs G E. Effect of solidification parameters on the microstructures and properties of CMSX-10 [J]. Mater. Sci. Eng., 2008, A479: 356
26 Khan T. Heat-resistant materials/superalloys [J]. Adv. Mater. Process, 1990, 137: 19
27 General Editorial Board of Aviation Manufacturing Engineering Manual. Aviation Manufacturing Engineering Manual, Heat Treatment Division [M]. Beijing: Aviation Industry Press, 1993: 325
27 《航空制造工程手册》总编委会. 航空制造工程手册——热处理 [M]. 北京: 航空工业出版社, 1993: 325
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[6] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[7] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[8] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[10] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[11] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[12] 张少华, 谢光, 董加胜, 楼琅洪. 单晶高温合金共晶溶解行为的差热分析[J]. 金属学报, 2021, 57(12): 1559-1566.
[13] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[14] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[15] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.